Properties

Label 277440.gk
Number of curves $2$
Conductor $277440$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 277440.gk have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 277440.gk do not have complex multiplication.

Modular form 277440.2.a.gk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} + q^{7} + q^{9} - 5 q^{13} - q^{15} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 277440.gk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
277440.gk1 277440gk1 \([0, 1, 0, -6981, 222219]\) \(-127157223424/16875\) \(-4993920000\) \([]\) \(248832\) \(0.88050\) \(\Gamma_0(N)\)-optimal
277440.gk2 277440gk2 \([0, 1, 0, 1179, 708555]\) \(611926016/732421875\) \(-216750000000000\) \([]\) \(746496\) \(1.4298\)