Properties

Label 27735l
Number of curves $4$
Conductor $27735$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("l1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 27735l have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(43\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - 2 T + 2 T^{2}\) 1.2.ac
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 9 T + 23 T^{2}\) 1.23.j
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27735l do not have complex multiplication.

Modular form 27735.2.a.l

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + q^{5} - q^{6} + 3 q^{8} + q^{9} - q^{10} + 4 q^{11} - q^{12} + 6 q^{13} + q^{15} - q^{16} - 2 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 27735l

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27735.f4 27735l1 \([1, 0, 0, 2735, -501568]\) \(357911/17415\) \(-110086537498335\) \([4]\) \(81312\) \(1.3741\) \(\Gamma_0(N)\)-optimal
27735.f3 27735l2 \([1, 0, 0, -80470, -8439325]\) \(9116230969/416025\) \(2629845062460225\) \([2, 2]\) \(162624\) \(1.7207\)  
27735.f2 27735l3 \([1, 0, 0, -219145, 28420490]\) \(184122897769/51282015\) \(324172234699263735\) \([2]\) \(325248\) \(2.0672\)  
27735.f1 27735l4 \([1, 0, 0, -1273075, -552982768]\) \(36097320816649/80625\) \(509659895825625\) \([2]\) \(325248\) \(2.0672\)