Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-39x-14819\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-39xz^2-14819z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-49923x-691233858\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(175608467329/403326889, 71829520009567697/8100013911787)$ | $25.926579597785233703770754705$ | $\infty$ |
| $(25, -13)$ | $0$ | $2$ |
Integral points
\( \left(25, -13\right) \)
Invariants
| Conductor: | $N$ | = | \( 27735 \) | = | $3 \cdot 5 \cdot 43^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-94820445735$ | = | $-1 \cdot 3 \cdot 5 \cdot 43^{6} $ |
|
| j-invariant: | $j$ | = | \( -\frac{1}{15} \) | = | $-1 \cdot 3^{-1} \cdot 5^{-1}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.78517530520399211487559263805$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.0954247526427890968608286186$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.1980768440515948$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.1992735451987557$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $25.926579597785233703770754705$ |
|
| Real period: | $\Omega$ | ≈ | $0.48684931355927389705403744770$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 1\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $6.3111687400608082795801419247 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.311168740 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.486849 \cdot 25.926580 \cdot 2}{2^2} \\ & \approx 6.311168740\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 20160 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $43$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 32.48.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 20640 = 2^{5} \cdot 3 \cdot 5 \cdot 43 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 9632 \\ 11610 & 3871 \end{array}\right),\left(\begin{array}{rr} 15094 & 8643 \\ 19565 & 5548 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 20512 & 989 \\ 19307 & 9762 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 28 \\ 68 & 381 \end{array}\right),\left(\begin{array}{rr} 20609 & 32 \\ 20608 & 33 \end{array}\right),\left(\begin{array}{rr} 8343 & 5762 \\ 10234 & 10063 \end{array}\right),\left(\begin{array}{rr} 23 & 18 \\ 18078 & 18635 \end{array}\right),\left(\begin{array}{rr} 5759 & 0 \\ 0 & 20639 \end{array}\right)$.
The torsion field $K:=\Q(E[20640])$ is a degree-$39370610442240$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/20640\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $3$ | split multiplicative | $4$ | \( 9245 = 5 \cdot 43^{2} \) |
| $5$ | nonsplit multiplicative | $6$ | \( 5547 = 3 \cdot 43^{2} \) |
| $43$ | additive | $926$ | \( 15 = 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4, 8 and 16.
Its isogeny class 27735.k
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15.a7, its twist by $-43$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-15}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{645}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-43}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-15}, \sqrt{-43})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{-43})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{5}, \sqrt{-43})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.9969223716000000.19 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.9969223716000000.6 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.173076800625.1 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.53418765625.1 | \(\Z/16\Z\) | not in database |
| $8$ | 8.0.4326920015625.1 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | 16.0.18722236821616250244140625.1 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/32\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | split | nonsplit | ss | ord | ord | ord | ord | ss | ord | ss | ord | ord | add | ord |
| $\lambda$-invariant(s) | 2 | 4 | 1 | 3,1 | 1 | 1 | 3 | 3 | 1,1 | 1 | 1,1 | 1 | 1 | - | 1 |
| $\mu$-invariant(s) | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | - | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.