Show commands: SageMath
Rank
The elliptic curves in class 277200is have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 277200is do not have complex multiplication.Modular form 277200.2.a.is
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrrrr} 1 & 2 & 3 & 4 & 4 & 6 & 12 & 12 \\ 2 & 1 & 6 & 2 & 2 & 3 & 6 & 6 \\ 3 & 6 & 1 & 12 & 12 & 2 & 4 & 4 \\ 4 & 2 & 12 & 1 & 4 & 6 & 3 & 12 \\ 4 & 2 & 12 & 4 & 1 & 6 & 12 & 3 \\ 6 & 3 & 2 & 6 & 6 & 1 & 2 & 2 \\ 12 & 6 & 4 & 3 & 12 & 2 & 1 & 4 \\ 12 & 6 & 4 & 12 & 3 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 277200is
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 277200.is7 | 277200is1 | \([0, 0, 0, -4221075, 1517607250]\) | \(178272935636041/81841914000\) | \(3818416339584000000000\) | \([2]\) | \(10616832\) | \(2.8360\) | \(\Gamma_0(N)\)-optimal |
| 277200.is5 | 277200is2 | \([0, 0, 0, -56709075, 164282895250]\) | \(432288716775559561/270140062500\) | \(12603654756000000000000\) | \([2, 2]\) | \(21233664\) | \(3.1826\) | |
| 277200.is4 | 277200is3 | \([0, 0, 0, -171891075, -867370202750]\) | \(12038605770121350841/757333463040\) | \(35334150051594240000000\) | \([2]\) | \(31850496\) | \(3.3853\) | |
| 277200.is2 | 277200is4 | \([0, 0, 0, -907209075, 10517419395250]\) | \(1769857772964702379561/691787250\) | \(32276025936000000000\) | \([2]\) | \(42467328\) | \(3.5291\) | |
| 277200.is6 | 277200is5 | \([0, 0, 0, -46017075, 228124827250]\) | \(-230979395175477481/348191894531250\) | \(-16245241031250000000000000\) | \([2]\) | \(42467328\) | \(3.5291\) | |
| 277200.is3 | 277200is6 | \([0, 0, 0, -182259075, -756836954750]\) | \(14351050585434661561/3001282273281600\) | \(140027825742226329600000000\) | \([2, 2]\) | \(63700992\) | \(3.7319\) | |
| 277200.is1 | 277200is7 | \([0, 0, 0, -923139075, 10128912885250]\) | \(1864737106103260904761/129177711985836360\) | \(6026915330411181212160000000\) | \([2]\) | \(127401984\) | \(4.0785\) | |
| 277200.is8 | 277200is8 | \([0, 0, 0, 392732925, -4568458922750]\) | \(143584693754978072519/276341298967965000\) | \(-12892979644649375040000000000\) | \([2]\) | \(127401984\) | \(4.0785\) |