Properties

Label 27456.bl
Number of curves $2$
Conductor $27456$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bl1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 27456.bl have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27456.bl do not have complex multiplication.

Modular form 27456.2.a.bl

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 3 q^{5} + q^{7} + q^{9} + q^{11} - q^{13} - 3 q^{15} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 27456.bl

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27456.bl1 27456ch1 \([0, 1, 0, -6655137, -6610430241]\) \(-124352595912593543977/103332962304\) \(-27088116070219776\) \([]\) \(599040\) \(2.4565\) \(\Gamma_0(N)\)-optimal
27456.bl2 27456ch2 \([0, 1, 0, -5166177, -9644645601]\) \(-58169016237585194137/119573538788081664\) \(-31345485752062879727616\) \([]\) \(1797120\) \(3.0058\)