Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3+138x+676\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3+138xz^2+676z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+178821x+31002966\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(12, 58)$ | $0.11926464611302107423348141991$ | $\infty$ |
$(44, 282)$ | $1.4380677477109916274733527545$ | $\infty$ |
Integral points
\( \left(-4, 10\right) \), \( \left(-4, -6\right) \), \( \left(0, 26\right) \), \( \left(0, -26\right) \), \( \left(2, 30\right) \), \( \left(2, -32\right) \), \( \left(4, 34\right) \), \( \left(4, -38\right) \), \( \left(12, 58\right) \), \( \left(12, -70\right) \), \( \left(24, 122\right) \), \( \left(24, -146\right) \), \( \left(30, 164\right) \), \( \left(30, -194\right) \), \( \left(44, 282\right) \), \( \left(44, -326\right) \), \( \left(76, 634\right) \), \( \left(76, -710\right) \), \( \left(140, 1594\right) \), \( \left(140, -1734\right) \), \( \left(236, 3514\right) \), \( \left(236, -3750\right) \), \( \left(810, 22654\right) \), \( \left(810, -23464\right) \), \( \left(1116, 36730\right) \), \( \left(1116, -37846\right) \)
Invariants
Conductor: | $N$ | = | \( 2738 \) | = | $2 \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $-358875136$ | = | $-1 \cdot 2^{18} \cdot 37^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{212207543}{262144} \) | = | $2^{-18} \cdot 37 \cdot 179^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.32763207079326447404764206923$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27418758131410626668037387594$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9847633793256833$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.3507613039546444$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.16951102918632373793076047945$ |
|
Real period: | $\Omega$ | ≈ | $1.1398640062792850435211755232$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 18 $ = $ ( 2 \cdot 3^{2} )\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $3.4779513750632602468969044638 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.477951375 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.139864 \cdot 0.169511 \cdot 18}{1^2} \\ & \approx 3.477951375\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1728 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $18$ | $I_{18}$ | split multiplicative | -1 | 1 | 18 | 18 |
$37$ | $1$ | $II$ | additive | 1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.2.0.1 |
$3$ | 3B | 9.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \), index $288$, genus $6$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 12 & 433 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 632 & 27 \\ 753 & 833 \end{array}\right),\left(\begin{array}{rr} 19 & 27 \\ 657 & 1144 \end{array}\right),\left(\begin{array}{rr} 667 & 36 \\ 351 & 649 \end{array}\right),\left(\begin{array}{rr} 1297 & 36 \\ 1296 & 37 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 1282 & 1309 \end{array}\right),\left(\begin{array}{rr} 1198 & 27 \\ 123 & 713 \end{array}\right)$.
The torsion field $K:=\Q(E[1332])$ is a degree-$2361540096$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1332\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 1369 = 37^{2} \) |
$3$ | good | $2$ | \( 1369 = 37^{2} \) |
$37$ | additive | $254$ | \( 2 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 2738.c
consists of 2 curves linked by isogenies of
degree 3.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-111}) \) | \(\Z/3\Z\) | not in database |
$3$ | 3.1.5476.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.119946304.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.2.624095613.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.0.29956589424.3 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | 12.0.3505458007492611921.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.2542727022271664105435141294247954591.4 | \(\Z/9\Z\) | not in database |
$18$ | 18.2.995665220963833277921326682112.1 | \(\Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | add | ord | ord | ord |
$\lambda$-invariant(s) | 4 | 4 | 6 | 4 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | - | 2 | 2 | 2 |
$\mu$-invariant(s) | 0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.