Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-x^2-9123x+336545\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-x^2z-9123xz^2+336545z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-145971x+21392910\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(37, 202)$ | $0.86268697519151853315793858187$ | $\infty$ |
$(65, 90)$ | $1.7700389747860354178628496402$ | $\infty$ |
$(-110, 55)$ | $0$ | $2$ |
$(58, -29)$ | $0$ | $2$ |
Integral points
\( \left(-110, 55\right) \), \( \left(-89, 706\right) \), \( \left(-89, -617\right) \), \( \left(-38, 811\right) \), \( \left(-38, -773\right) \), \( \left(-17, 706\right) \), \( \left(-17, -689\right) \), \( \left(16, 433\right) \), \( \left(16, -449\right) \), \( \left(37, 202\right) \), \( \left(37, -239\right) \), \( \left(52, 1\right) \), \( \left(52, -53\right) \), \( \left(58, -29\right) \), \( \left(59, 3\right) \), \( \left(59, -62\right) \), \( \left(65, 90\right) \), \( \left(65, -155\right) \), \( \left(76, 241\right) \), \( \left(76, -317\right) \), \( \left(107, 706\right) \), \( \left(107, -813\right) \), \( \left(184, 2113\right) \), \( \left(184, -2297\right) \), \( \left(940, 28195\right) \), \( \left(940, -29135\right) \), \( \left(1192, 40417\right) \), \( \left(1192, -41609\right) \), \( \left(74321, 20224021\right) \), \( \left(74321, -20298342\right) \)
Invariants
Conductor: | $N$ | = | \( 27342 \) | = | $2 \cdot 3^{2} \cdot 7^{2} \cdot 31$ |
|
Discriminant: | $\Delta$ | = | $329684969124$ | = | $2^{2} \cdot 3^{6} \cdot 7^{6} \cdot 31^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{979146657}{3844} \) | = | $2^{-2} \cdot 3^{3} \cdot 31^{-2} \cdot 331^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.0676099430627043165038634545$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.45465127579900718174643553568$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0250423431234554$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.814471694831985$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
Mordell-Weil rank: | $r$ | = | $ 2$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.4179787971524553864209079142$ |
|
Real period: | $\Omega$ | ≈ | $0.96778819089201616037437915220$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 64 $ = $ 2\cdot2^{2}\cdot2^{2}\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $5.4892125392776478184330197468 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.489212539 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.967788 \cdot 1.417979 \cdot 64}{4^2} \\ & \approx 5.489212539\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 49152 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$3$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$7$ | $4$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$31$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cs | 8.12.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5208 = 2^{3} \cdot 3 \cdot 7 \cdot 31 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 4033 & 252 \\ 378 & 505 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5205 & 4 \\ 5204 & 5 \end{array}\right),\left(\begin{array}{rr} 1303 & 252 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1735 & 0 \\ 0 & 5207 \end{array}\right),\left(\begin{array}{rr} 2605 & 2730 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4463 & 0 \\ 0 & 5207 \end{array}\right)$.
The torsion field $K:=\Q(E[5208])$ is a degree-$2764623052800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5208\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 441 = 3^{2} \cdot 7^{2} \) |
$3$ | additive | $6$ | \( 3038 = 2 \cdot 7^{2} \cdot 31 \) |
$7$ | additive | $26$ | \( 558 = 2 \cdot 3^{2} \cdot 31 \) |
$31$ | split multiplicative | $32$ | \( 882 = 2 \cdot 3^{2} \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 27342.g
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 62.a3, its twist by $21$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z \oplus \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$4$ | \(\Q(\sqrt{-42}, \sqrt{62})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-21}, \sqrt{-31})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{2}, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | add | ord | add | ss | ord | ord | ord | ord | ord | split | ord | ord | ord | ord |
$\lambda$-invariant(s) | 12 | - | 2 | - | 2,4 | 2 | 2 | 2 | 2 | 2 | 3 | 2 | 2 | 2 | 2 |
$\mu$-invariant(s) | 0 | - | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.