Properties

Label 27225.n
Number of curves $1$
Conductor $27225$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 27225.n1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 2 T + 23 T^{2}\) 1.23.c
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27225.n do not have complex multiplication.

Modular form 27225.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} + 3 q^{8} + 5 q^{13} - q^{16} - 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 27225.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27225.n1 27225j1 \([1, -1, 1, -980, -11558]\) \(-1273201875\) \(-81675\) \([]\) \(6336\) \(0.24925\) \(\Gamma_0(N)\)-optimal