Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-68630x-27034378\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-68630xz^2-27034378z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1098075x-1731298250\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(231642/529, 60237410/12167)$ | $11.657911859562392117424816675$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 27225 \) | = | $3^{2} \cdot 5^{2} \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $-295443477095765625$ | = | $-1 \cdot 3^{6} \cdot 5^{6} \cdot 11^{10} $ |
|
j-invariant: | $j$ | = | \( -121 \) | = | $-1 \cdot 11^{2}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0350118988346112156440346162$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3172592623818026040722539838$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9461121308337243$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.675887591246322$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $11.657911859562392117424816675$ |
|
Real period: | $\Omega$ | ≈ | $0.12971014033343119055189207020$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 2 $ = $ 2\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.0242987665972193019379596074 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.024298767 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.129710 \cdot 11.657912 \cdot 2}{1^2} \\ & \approx 3.024298767\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 221760 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
$11$ | $1$ | $II^{*}$ | additive | -1 | 2 | 10 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.2.0.1 |
$11$ | 11B.10.4 | 11.60.1.4 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1320 = 2^{3} \cdot 3 \cdot 5 \cdot 11 \), index $480$, genus $16$, and generators
$\left(\begin{array}{rr} 661 & 660 \\ 660 & 661 \end{array}\right),\left(\begin{array}{rr} 439 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 1319 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 660 & 1 \end{array}\right),\left(\begin{array}{rr} 661 & 660 \\ 330 & 1 \end{array}\right),\left(\begin{array}{rr} 1156 & 495 \\ 165 & 991 \end{array}\right),\left(\begin{array}{rr} 719 & 0 \\ 0 & 479 \end{array}\right),\left(\begin{array}{rr} 1 & 660 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 705 & 616 \\ 704 & 705 \end{array}\right),\left(\begin{array}{rr} 661 & 825 \\ 0 & 331 \end{array}\right),\left(\begin{array}{rr} 1 & 1140 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 661 & 990 \\ 990 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 616 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[1320])$ is a degree-$973209600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1320\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$3$ | additive | $6$ | \( 3025 = 5^{2} \cdot 11^{2} \) |
$5$ | additive | $14$ | \( 1089 = 3^{2} \cdot 11^{2} \) |
$11$ | additive | $32$ | \( 225 = 3^{2} \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
11.
Its isogeny class 27225.g
consists of 2 curves linked by isogenies of
degree 11.
Twists
The minimal quadratic twist of this elliptic curve is 121.c2, its twist by $165$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.484.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.937024.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.2421502441875.1 | \(\Z/3\Z\) | not in database |
$10$ | 10.0.162778775259375.1 | \(\Z/11\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | add | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ss | ord |
$\lambda$-invariant(s) | ? | - | - | 1 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 |
$\mu$-invariant(s) | ? | - | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.