Properties

Label 27225.bc
Number of curves $2$
Conductor $27225$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 27225.bc have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27225.bc do not have complex multiplication.

Modular form 27225.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{7} + q^{13} + 4 q^{16} - 6 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 27225.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27225.bc1 27225bz1 \([0, 0, 1, -635250, 204433281]\) \(-56197120/3267\) \(-1648135099501171875\) \([]\) \(345600\) \(2.2518\) \(\Gamma_0(N)\)-optimal
27225.bc2 27225bz2 \([0, 0, 1, 3448500, 361657656]\) \(8990228480/5314683\) \(-2681149554644073046875\) \([]\) \(1036800\) \(2.8011\)