Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+x^2+315687x+36481656\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+x^2z+315687xz^2+36481656z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+409130325x+1695951195750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(670, 23102)$ | $1.6003148592128997038707097294$ | $\infty$ |
| $(40, 6992)$ | $4.3128898096583381634412951410$ | $\infty$ |
| $(-445/4, 441/8)$ | $0$ | $2$ |
Integral points
\( \left(-81, 3263\right) \), \( \left(-81, -3183\right) \), \( \left(40, 6992\right) \), \( \left(40, -7033\right) \), \( \left(340, 13367\right) \), \( \left(340, -13708\right) \), \( \left(670, 23102\right) \), \( \left(670, -23773\right) \), \( \left(4311, 283395\right) \), \( \left(4311, -287707\right) \)
Invariants
| Conductor: | $N$ | = | \( 27075 \) | = | $3 \cdot 5^{2} \cdot 19^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-2584307427978515625$ | = | $-1 \cdot 3^{2} \cdot 5^{14} \cdot 19^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{4733169839}{3515625} \) | = | $3^{-2} \cdot 5^{-8} \cdot 23^{3} \cdot 73^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.2212344639973992845699129461$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.055703981802871132734980436459$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0558519748642754$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.859821994583027$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $6.8575048310480019863121788050$ |
|
| Real period: | $\Omega$ | ≈ | $0.16377099645915117351187995924$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.4922415976166975985896004582 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.492241598 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.163771 \cdot 6.857505 \cdot 16}{2^2} \\ & \approx 4.492241598\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 331776 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $5$ | $4$ | $I_{8}^{*}$ | additive | 1 | 2 | 14 | 8 |
| $19$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.48.0.197 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9120 = 2^{5} \cdot 3 \cdot 5 \cdot 19 \), index $768$, genus $13$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 32 & 1 \end{array}\right),\left(\begin{array}{rr} 25 & 16 \\ 7384 & 8009 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 4 & 129 \end{array}\right),\left(\begin{array}{rr} 2585 & 2432 \\ 6422 & 2889 \end{array}\right),\left(\begin{array}{rr} 1823 & 6232 \\ 0 & 9119 \end{array}\right),\left(\begin{array}{rr} 9089 & 32 \\ 9088 & 33 \end{array}\right),\left(\begin{array}{rr} 7199 & 0 \\ 0 & 9119 \end{array}\right),\left(\begin{array}{rr} 1 & 32 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 6727 & 5776 \\ 855 & 3193 \end{array}\right),\left(\begin{array}{rr} 4333 & 5776 \\ 5054 & 5625 \end{array}\right)$.
The torsion field $K:=\Q(E[9120])$ is a degree-$1452382617600$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9120\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 9025 = 5^{2} \cdot 19^{2} \) |
| $3$ | nonsplit multiplicative | $4$ | \( 9025 = 5^{2} \cdot 19^{2} \) |
| $5$ | additive | $18$ | \( 1083 = 3 \cdot 19^{2} \) |
| $19$ | additive | $182$ | \( 75 = 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 27075g
consists of 8 curves linked by isogenies of
degrees dividing 16.
Twists
The minimal quadratic twist of this elliptic curve is 15a4, its twist by $-95$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-1}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{95}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-95}) \) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(i, \sqrt{95})\) | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{95})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-6}, \sqrt{95})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.432373800960000.267 | \(\Z/4\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.1688960160000.69 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/24\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | nonsplit | add | ss | ord | ord | ord | add | ss | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 3 | 2 | - | 2,2 | 2 | 2 | 2 | - | 2,2 | 2 | 2,2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | 1 | 0 | - | 0,0 | 0 | 0 | 0 | - | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.