Properties

Label 27048.v
Number of curves $1$
Conductor $27048$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("v1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 27048.v1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 6 T + 13 T^{2}\) 1.13.g
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27048.v do not have complex multiplication.

Modular form 27048.2.a.v

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + 3 q^{5} + q^{9} - 3 q^{11} - 6 q^{13} + 3 q^{15} - 2 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 27048.v

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27048.v1 27048w1 \([0, 1, 0, -464, 3744]\) \(-110328386/1587\) \(-159258624\) \([]\) \(11904\) \(0.37870\) \(\Gamma_0(N)\)-optimal