Properties

Label 27048.n
Number of curves $4$
Conductor $27048$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("n1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 27048.n have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(7\)\(1\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27048.n do not have complex multiplication.

Modular form 27048.2.a.n

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + q^{9} - 4 q^{11} + 2 q^{13} - 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 27048.n

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27048.n1 27048v4 \([0, 1, 0, -36864, -2317680]\) \(45989074372/7555707\) \(910255485791232\) \([2]\) \(110592\) \(1.5920\)  
27048.n2 27048v2 \([0, 1, 0, -10404, 370656]\) \(4135597648/385641\) \(11614791170304\) \([2, 2]\) \(55296\) \(1.2455\)  
27048.n3 27048v1 \([0, 1, 0, -10159, 390746]\) \(61604313088/621\) \(1168960464\) \([2]\) \(27648\) \(0.89888\) \(\Gamma_0(N)\)-optimal
27048.n4 27048v3 \([0, 1, 0, 12136, 1777152]\) \(1640689628/12223143\) \(-1472553524026368\) \([2]\) \(110592\) \(1.5920\)