Properties

Label 267036.t
Number of curves $1$
Conductor $267036$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 267036.t1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(19\) \( 1 - 3 T + 19 T^{2}\) 1.19.ad
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 267036.t do not have complex multiplication.

Modular form 267036.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + q^{7} + q^{9} - q^{11} + q^{13} - q^{15} + 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 267036.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
267036.t1 267036t1 \([0, -1, 0, -493130, -133126587]\) \(-34339609640704/916839\) \(-354084233990256\) \([]\) \(1774080\) \(1.8967\) \(\Gamma_0(N)\)-optimal