Properties

Label 266560.o
Number of curves $4$
Conductor $266560$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 266560.o have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 266560.o do not have complex multiplication.

Modular form 266560.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{3} - q^{5} + q^{9} - 6 q^{11} + 2 q^{13} + 2 q^{15} - q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 3 & 6 & 2 \\ 3 & 1 & 2 & 6 \\ 6 & 2 & 1 & 3 \\ 2 & 6 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 266560.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
266560.o1 266560o3 \([0, 1, 0, -13072481, 3574059775]\) \(8010684753304969/4456448000000\) \(137441221214732288000000\) \([2]\) \(33177600\) \(3.1302\)  
266560.o2 266560o1 \([0, 1, 0, -8007841, -8724645441]\) \(1841373668746009/31443200\) \(969739085230899200\) \([2]\) \(11059200\) \(2.5808\) \(\Gamma_0(N)\)-optimal
266560.o3 266560o2 \([0, 1, 0, -7756961, -9296601665]\) \(-1673672305534489/241375690000\) \(-7444262696467824640000\) \([2]\) \(22118400\) \(2.9274\)  
266560.o4 266560o4 \([0, 1, 0, 51152799, 28352172799]\) \(479958568556831351/289000000000000\) \(-8913043062784000000000000\) \([2]\) \(66355200\) \(3.4767\)