Properties

Label 266175z
Number of curves $1$
Conductor $266175$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 266175z1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 + 8 T + 29 T^{2}\) 1.29.i
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 266175z do not have complex multiplication.

Modular form 266175.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{7} + 3 q^{8} + q^{14} - q^{16} - 3 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 266175z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
266175.z1 266175z1 \([1, -1, 1, 15685, 119533132]\) \(179685/2599051\) \(-6173141281270297425\) \([]\) \(3386880\) \(2.2845\) \(\Gamma_0(N)\)-optimal