Show commands: SageMath
Rank
The elliptic curves in class 266175dq have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 266175dq do not have complex multiplication.Modular form 266175.2.a.dq
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 266175dq
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 266175.dq3 | 266175dq1 | \([1, -1, 0, -38824317, 92213050216]\) | \(117713838907729/1322517105\) | \(72712481438039561015625\) | \([2]\) | \(27869184\) | \(3.2005\) | \(\Gamma_0(N)\)-optimal |
| 266175.dq2 | 266175dq2 | \([1, -1, 0, -70955442, -82483876409]\) | \(718576775407009/362361861225\) | \(19922789662653383862890625\) | \([2, 2]\) | \(55738368\) | \(3.5471\) | |
| 266175.dq4 | 266175dq3 | \([1, -1, 0, 262713933, -636708708284]\) | \(36472485598112591/24291459037755\) | \(-1335553436479491714008671875\) | \([2]\) | \(111476736\) | \(3.8937\) | |
| 266175.dq1 | 266175dq4 | \([1, -1, 0, -918722817, -10709247922034]\) | \(1559802282754777489/1481059636875\) | \(81429208701919246669921875\) | \([2]\) | \(111476736\) | \(3.8937\) |