Properties

Label 266175bi
Number of curves $1$
Conductor $266175$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bi1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 266175bi1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 7 T + 17 T^{2}\) 1.17.h
\(19\) \( 1 + 6 T + 19 T^{2}\) 1.19.g
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - T + 29 T^{2}\) 1.29.ab
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 266175bi do not have complex multiplication.

Modular form 266175.2.a.bi

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{7} + 3 q^{8} + 4 q^{11} + q^{14} - q^{16} - 7 q^{17} - 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 266175bi

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
266175.bi1 266175bi1 \([1, -1, 1, -13974980, 20677083522]\) \(-32485001809/1071875\) \(-9959522441107763671875\) \([]\) \(20217600\) \(2.9958\) \(\Gamma_0(N)\)-optimal