Properties

Label 266175bb
Number of curves $4$
Conductor $266175$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 266175bb have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 266175bb do not have complex multiplication.

Modular form 266175.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{7} + 3 q^{8} + q^{14} - q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 266175bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
266175.bb3 266175bb1 \([1, -1, 1, -1908380, -729656378]\) \(13980103929/3901625\) \(214512791039244140625\) \([2]\) \(6193152\) \(2.6084\) \(\Gamma_0(N)\)-optimal
266175.bb2 266175bb2 \([1, -1, 1, -11224505, 13896659872]\) \(2844576388809/129390625\) \(7113944600791259765625\) \([2, 2]\) \(12386304\) \(2.9550\)  
266175.bb1 266175bb3 \([1, -1, 1, -177583880, 910906409872]\) \(11264882429818809/24990875\) \(1374007585752826171875\) \([2]\) \(24772608\) \(3.3016\)  
266175.bb4 266175bb4 \([1, -1, 1, 6076870, 52859356372]\) \(451394172711/22216796875\) \(-1221487740520477294921875\) \([2]\) \(24772608\) \(3.3016\)