Properties

Label 266175.bj
Number of curves $4$
Conductor $266175$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 266175.bj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 266175.bj do not have complex multiplication.

Modular form 266175.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{4} - q^{7} + 3 q^{8} + 4 q^{11} + q^{14} - q^{16} - 2 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 266175.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
266175.bj1 266175bj4 \([1, -1, 1, -22910855, -37613340228]\) \(24190225473961/2879296875\) \(158304811171453857421875\) \([2]\) \(24772608\) \(3.1826\)  
266175.bj2 266175bj2 \([1, -1, 1, -5609480, 4498206522]\) \(355045312441/46580625\) \(2561020056284853515625\) \([2, 2]\) \(12386304\) \(2.8360\)  
266175.bj3 266175bj1 \([1, -1, 1, -5419355, 4857162522]\) \(320153881321/6825\) \(375241033887890625\) \([2]\) \(6193152\) \(2.4895\) \(\Gamma_0(N)\)-optimal
266175.bj4 266175bj3 \([1, -1, 1, 8649895, 23634287772]\) \(1301812981559/5143122075\) \(-282770761147931626171875\) \([2]\) \(24772608\) \(3.1826\)