Properties

Label 26400.bt
Number of curves $4$
Conductor $26400$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bt1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 26400.bt have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 26400.bt do not have complex multiplication.

Modular form 26400.2.a.bt

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} + q^{11} - 2 q^{13} + 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 26400.bt

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
26400.bt1 26400ca4 \([0, 1, 0, -221888008, 1272106648988]\) \(151020262560470148771848/35809491031875\) \(286475928255000000000\) \([2]\) \(2949120\) \(3.3041\)  
26400.bt2 26400ca3 \([0, 1, 0, -27395633, -24685819137]\) \(35529391776305786176/16450653076171875\) \(1052841796875000000000000\) \([2]\) \(2949120\) \(3.3041\)  
26400.bt3 26400ca1 \([0, 1, 0, -13919258, 19718836488]\) \(298244193811346574784/4540317078515625\) \(4540317078515625000000\) \([2, 2]\) \(1474560\) \(2.9575\) \(\Gamma_0(N)\)-optimal
26400.bt4 26400ca2 \([0, 1, 0, -1263008, 54245086488]\) \(-27851742625371848/158882936571500625\) \(-1271063492572005000000000\) \([2]\) \(2949120\) \(3.3041\)