Properties

Label 264.b
Number of curves $4$
Conductor $264$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("b1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 264.b have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(11\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 264.b do not have complex multiplication.

Modular form 264.2.a.b

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} + 4 q^{7} + q^{9} - q^{11} + 6 q^{13} - 2 q^{15} + 6 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 264.b

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
264.b1 264c4 \([0, 1, 0, -704, 6960]\) \(37736227588/33\) \(33792\) \([2]\) \(96\) \(0.16932\)  
264.b2 264c3 \([0, 1, 0, -104, -288]\) \(122657188/43923\) \(44977152\) \([2]\) \(96\) \(0.16932\)  
264.b3 264c2 \([0, 1, 0, -44, 96]\) \(37642192/1089\) \(278784\) \([2, 2]\) \(48\) \(-0.17725\)  
264.b4 264c1 \([0, 1, 0, 1, 6]\) \(2048/891\) \(-14256\) \([4]\) \(24\) \(-0.52383\) \(\Gamma_0(N)\)-optimal