Properties

Label 260100.z
Number of curves $1$
Conductor $260100$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("z1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 260100.z1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 260100.z do not have complex multiplication.

Modular form 260100.2.a.z

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{7} - 3 q^{11} - 3 q^{13} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 260100.z

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
260100.z1 260100z1 \([0, 0, 0, -2947800, -41885781500]\) \(-8192/2187\) \(-756269516081306124000000\) \([]\) \(25589760\) \(3.2611\) \(\Gamma_0(N)\)-optimal