Properties

Label 259350gr
Number of curves $4$
Conductor $259350$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("gr1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 259350gr have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 259350gr do not have complex multiplication.

Modular form 259350.2.a.gr

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} + q^{6} + q^{7} + q^{8} + q^{9} + q^{12} - q^{13} + q^{14} + q^{16} - 6 q^{17} + q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 259350gr

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
259350.gr4 259350gr1 \([1, 0, 0, -355338, -85599708]\) \(-317562142497484249/18670942617600\) \(-291733478400000000\) \([2]\) \(3932160\) \(2.1071\) \(\Gamma_0(N)\)-optimal
259350.gr3 259350gr2 \([1, 0, 0, -5763338, -5325951708]\) \(1354958399265695661529/4304795040000\) \(67262422500000000\) \([2, 2]\) \(7864320\) \(2.4537\)  
259350.gr2 259350gr3 \([1, 0, 0, -5841338, -5174397708]\) \(1410719602237262088409/76269550743750000\) \(1191711730371093750000\) \([2]\) \(15728640\) \(2.8003\)  
259350.gr1 259350gr4 \([1, 0, 0, -92213338, -340838401708]\) \(5549896908024170183373529/56019600\) \(875306250000\) \([2]\) \(15728640\) \(2.8003\)