Properties

Label 259182fw
Number of curves $2$
Conductor $259182$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 259182fw have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 259182fw do not have complex multiplication.

Modular form 259182.2.a.fw

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + 3 q^{5} - q^{7} + q^{8} + 3 q^{10} - 5 q^{13} - q^{14} + q^{16} + q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 259182fw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
259182.fw1 259182fw1 \([1, -1, 1, -20351, -1112911]\) \(-19486825371/11662\) \(-557818498314\) \([]\) \(648000\) \(1.1980\) \(\Gamma_0(N)\)-optimal
259182.fw2 259182fw2 \([1, -1, 1, 17764, -4627961]\) \(17779581/275128\) \(-9593612983125864\) \([]\) \(1944000\) \(1.7473\)