Properties

Label 259182.bc
Number of curves $1$
Conductor $259182$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 259182.bc1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(11\)\(1\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(13\) \( 1 + 3 T + 13 T^{2}\) 1.13.d
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 259182.bc do not have complex multiplication.

Modular form 259182.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{5} - q^{7} - q^{8} + q^{10} - 3 q^{13} + q^{14} + q^{16} + q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 259182.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
259182.bc1 259182bc1 \([1, -1, 0, -33913510065, 2528798202701469]\) \(-2509459799075197003568051/154883294784898727936\) \(-266235689630830212662830200520704\) \([]\) \(850037760\) \(4.9762\) \(\Gamma_0(N)\)-optimal