Properties

Label 258720.bj
Number of curves $4$
Conductor $258720$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bj1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 258720.bj have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(7\)\(1\)
\(11\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 258720.bj do not have complex multiplication.

Modular form 258720.2.a.bj

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{9} + q^{11} + 2 q^{13} + q^{15} + 6 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 258720.bj

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
258720.bj1 258720bj2 \([0, -1, 0, -4272081, 3400074945]\) \(17893449053367616/39220335\) \(18899899156131840\) \([2]\) \(5898240\) \(2.3694\)  
258720.bj2 258720bj4 \([0, -1, 0, -733056, -173288520]\) \(723231880398728/202569142545\) \(12202013210253672960\) \([2]\) \(5898240\) \(2.3694\)  
258720.bj3 258720bj1 \([0, -1, 0, -270006, 51939000]\) \(289119478354624/13074779025\) \(98447019360782400\) \([2, 2]\) \(2949120\) \(2.0229\) \(\Gamma_0(N)\)-optimal
258720.bj4 258720bj3 \([0, -1, 0, 145024, 196867476]\) \(5599924283512/281331579375\) \(-16946370038727360000\) \([2]\) \(5898240\) \(2.3694\)