Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2-9424x-1661120\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z-9424xz^2-1661120z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-763371x-1213246566\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(145, 0)$ | $0$ | $2$ |
Integral points
\( \left(145, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 25872 \) | = | $2^{4} \cdot 3 \cdot 7^{2} \cdot 11$ |
|
Discriminant: | $\Delta$ | = | $-1142967662419968$ | = | $-1 \cdot 2^{13} \cdot 3^{4} \cdot 7^{6} \cdot 11^{4} $ |
|
j-invariant: | $j$ | = | \( -\frac{192100033}{2371842} \) | = | $-1 \cdot 2^{-1} \cdot 3^{-4} \cdot 11^{-4} \cdot 577^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5711483542369310904836516841$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.094953900850670871486256809081$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0250656507343525$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.1505044516085015$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.20829480940106039774904697485$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 32 $ = $ 2\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.6663584752084831819923757988 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.666358475 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.208295 \cdot 1.000000 \cdot 32}{2^2} \\ & \approx 1.666358475\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 110592 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $I_{5}^{*}$ | additive | -1 | 4 | 13 | 1 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$11$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 8.12.0.16 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1848 = 2^{3} \cdot 3 \cdot 7 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 673 & 1064 \\ 1372 & 561 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1841 & 8 \\ 1840 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 1842 & 1843 \end{array}\right),\left(\begin{array}{rr} 232 & 371 \\ 1225 & 1254 \end{array}\right),\left(\begin{array}{rr} 617 & 1064 \\ 1148 & 561 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 1847 \end{array}\right),\left(\begin{array}{rr} 888 & 1015 \\ 1127 & 552 \end{array}\right)$.
The torsion field $K:=\Q(E[1848])$ is a degree-$40874803200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1848\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $4$ | \( 49 = 7^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 8624 = 2^{4} \cdot 7^{2} \cdot 11 \) |
$7$ | additive | $26$ | \( 528 = 2^{4} \cdot 3 \cdot 11 \) |
$11$ | split multiplicative | $12$ | \( 2352 = 2^{4} \cdot 3 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 25872.l
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 66.b3, its twist by $28$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-2}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{14}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{-7})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.40282095616.9 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.4.47771383115022336.31 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.2915733832704.30 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/6\Z\) | not in database |
$16$ | 16.0.1622647227216566419456.13 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 7 | 11 |
---|---|---|---|---|
Reduction type | add | nonsplit | add | split |
$\lambda$-invariant(s) | - | 0 | - | 1 |
$\mu$-invariant(s) | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.