Show commands: SageMath
Rank
The elliptic curves in class 25857.f have rank \(0\).
L-function data
| Bad L-factors: |
| |||||||||||||||||||||||||||
| Good L-factors: |
| |||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 25857.f do not have complex multiplication.Modular form 25857.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 8 & 8 & 4 \\ 2 & 1 & 2 & 4 & 4 & 2 \\ 4 & 2 & 1 & 2 & 2 & 4 \\ 8 & 4 & 2 & 1 & 4 & 8 \\ 8 & 4 & 2 & 4 & 1 & 8 \\ 4 & 2 & 4 & 8 & 8 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with LMFDB labels.
Elliptic curves in class 25857.f
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 25857.f1 | 25857h6 | \([1, -1, 1, -30684686, 65420629512]\) | \(908031902324522977/161726530797\) | \(569074221230118107517\) | \([2]\) | \(1376256\) | \(2.9869\) | |
| 25857.f2 | 25857h4 | \([1, -1, 1, -2112701, 802228236]\) | \(296380748763217/92608836489\) | \(325866765609137895129\) | \([2, 2]\) | \(688128\) | \(2.6404\) | |
| 25857.f3 | 25857h2 | \([1, -1, 1, -827456, -279948054]\) | \(17806161424897/668584449\) | \(2352577358620372689\) | \([2, 2]\) | \(344064\) | \(2.2938\) | |
| 25857.f4 | 25857h1 | \([1, -1, 1, -819851, -285520998]\) | \(17319700013617/25857\) | \(90984157428177\) | \([2]\) | \(172032\) | \(1.9472\) | \(\Gamma_0(N)\)-optimal |
| 25857.f5 | 25857h3 | \([1, -1, 1, 336109, -1005547188]\) | \(1193377118543/124806800313\) | \(-439163149931741597193\) | \([2]\) | \(688128\) | \(2.6404\) | |
| 25857.f6 | 25857h5 | \([1, -1, 1, 5895364, 5427686580]\) | \(6439735268725823/7345472585373\) | \(-25846835831377783607853\) | \([2]\) | \(1376256\) | \(2.9869\) |