Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-x^2-119403x+15807325\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-x^2z-119403xz^2+15807325z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1910451x+1009758350\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(225, 430)$ | $4.9866017841514336282171172571$ | $\infty$ |
| $(851/4, -851/8)$ | $0$ | $2$ |
Integral points
\( \left(225, 430\right) \), \( \left(225, -655\right) \)
Invariants
| Conductor: | $N$ | = | \( 2574 \) | = | $2 \cdot 3^{2} \cdot 11 \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $1412930444766984$ | = | $2^{3} \cdot 3^{9} \cdot 11 \cdot 13^{8} $ |
|
| j-invariant: | $j$ | = | \( \frac{258252149810350513}{1938176193096} \) | = | $2^{-3} \cdot 3^{-3} \cdot 11^{-1} \cdot 13^{-8} \cdot 636817^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.7371649490193097974524759655$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1878588046852549517548533470$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $1.0400391704321605$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.9446199177478345$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $4.9866017841514336282171172571$ |
|
| Real period: | $\Omega$ | ≈ | $0.48232038313172078902069929137$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot1\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $2.4051396830572419191012132589 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.405139683 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.482320 \cdot 4.986602 \cdot 4}{2^2} \\ & \approx 2.405139683\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 18432 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
| $3$ | $2$ | $I_{3}^{*}$ | additive | -1 | 2 | 9 | 3 |
| $11$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $13$ | $2$ | $I_{8}$ | nonsplit multiplicative | 1 | 1 | 8 | 8 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.11 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 52 & 1 \\ 167 & 6 \end{array}\right),\left(\begin{array}{rr} 172 & 263 \\ 65 & 258 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 232 & 107 \\ 169 & 198 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 235 & 232 \\ 122 & 237 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 258 & 259 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 257 & 8 \\ 256 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | nonsplit multiplicative | $4$ | \( 99 = 3^{2} \cdot 11 \) |
| $3$ | additive | $6$ | \( 143 = 11 \cdot 13 \) |
| $11$ | split multiplicative | $12$ | \( 234 = 2 \cdot 3^{2} \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 198 = 2 \cdot 3^{2} \cdot 11 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 2574m
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 858e3, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{66}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{11}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{6}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{11})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.5416809268248576.51 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.5289852801024.4 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.41108373504.5 | \(\Z/8\Z\) | not in database |
| $8$ | 8.2.914519421387.4 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | nonsplit | add | ord | ord | split | nonsplit | ord | ord | ord | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 2 | - | 1 | 1 | 2 | 1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.