y2+xy+y=x3−x2−16205x−448315
|
(homogenize, simplify) |
y2z+xyz+yz2=x3−x2z−16205xz2−448315z3
|
(dehomogenize, simplify) |
y2=x3−259275x−28951418
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, -1, 1, -16205, -448315])
gp:E = ellinit([1, -1, 1, -16205, -448315])
magma:E := EllipticCurve([1, -1, 1, -16205, -448315]);
oscar:E = elliptic_curve([1, -1, 1, -16205, -448315])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z⊕Z/2Z
magma:MordellWeilGroup(E);
P | h^(P) | Order |
(−39,370) | 0.20568461723680442357928171822 | ∞ |
(−117/4,113/8) | 0 | 2 |
(−65,604), (−65,−540), (−39,370), (−39,−332), (177,1396), (177,−1574), (351,5908), (351,−6260), (1365,49510), (1365,−50876)
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
Conductor: |
N |
= |
2574 | = | 2⋅32⋅11⋅13 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
Discriminant: |
Δ |
= |
183931773874992 | = | 24⋅39⋅112⋅136 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
j-invariant: |
j |
= |
252306960048645532578015625 | = | 2−4⋅3−3⋅56⋅11−2⋅13−6⋅34573 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
Endomorphism ring: |
End(E) | = | Z |
Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
Sato-Tate group: |
ST(E) | = | SU(2) |
Faltings height: |
hFaltings | ≈ | 1.4358247187422841881905294782 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
Stable Faltings height: |
hstable | ≈ | 0.88651857440822934249290685974 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
abc quality: |
Q | ≈ | 1.033360901289125 |
|
Szpiro ratio: |
σm | ≈ | 5.181669333312839 |
|
Analytic rank: |
ran | = | 1
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
Mordell-Weil rank: |
r | = | 1
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
Regulator: |
Reg(E/Q) | ≈ | 0.20568461723680442357928171822 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
Real period: |
Ω | ≈ | 0.43749823068009232121298983373 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
Tamagawa product: |
∏pcp | = | 192
= 22⋅22⋅2⋅(2⋅3)
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
Torsion order: |
#E(Q)tor | = | 2 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
Special value: |
L′(E,1) | ≈ | 4.3193594937222698374315044419 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
Analytic order of Ш: |
Шan |
≈ |
1
(rounded)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
4.319359494≈L′(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈221⋅0.437498⋅0.205685⋅192≈4.319359494
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, -1, 1, -16205, -448315]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, -1, 1, -16205, -448315]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
2574.2.a.u
q+q2+q4−4q7+q8+q11+q13−4q14+q16−4q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[1705, 12, 1704, 13], [1002, 1585, 1001, 1574], [937, 12, 474, 73], [1, 0, 12, 1], [925, 12, 402, 73], [1, 6, 6, 37], [1, 12, 0, 1], [1138, 1705, 1155, 20], [11, 2, 1666, 1707]]
GL(2,Integers(1716)).subgroup(gens)
magma:Gens := [[1705, 12, 1704, 13], [1002, 1585, 1001, 1574], [937, 12, 474, 73], [1, 0, 12, 1], [925, 12, 402, 73], [1, 6, 6, 37], [1, 12, 0, 1], [1138, 1705, 1155, 20], [11, 2, 1666, 1707]];
sub<GL(2,Integers(1716))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 1716=22⋅3⋅11⋅13, index 96, genus 1, and generators
(170517041213),(1002100115851574),(9374741273),(11201),(9254021273),(16637),(10121),(11381155170520),(11166621707).
The torsion field K:=Q(E[1716]) is a degree-16605388800 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/1716Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
ℓ |
Reduction type |
Serre weight |
Serre conductor |
2 |
split multiplicative |
4 |
9=32 |
3 |
additive |
2 |
22=2⋅11 |
11 |
split multiplicative |
12 |
234=2⋅32⋅13 |
13 |
split multiplicative |
14 |
198=2⋅32⋅11 |
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
2, 3 and 6.
Its isogeny class 2574.u
consists of 4 curves linked by isogenies of
degrees dividing 6.
The minimal quadratic twist of this elliptic curve is
858.c3, its twist by −3.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
≅Z/2Z
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
p |
2
|
3
|
5
|
7
|
11
|
13
|
17
|
19
|
23
|
29
|
31
|
37
|
41
|
43
|
47
|
Reduction type |
split
|
add
|
ss
|
ord
|
split
|
split
|
ss
|
ord
|
ss
|
ss
|
ord
|
ord
|
ord
|
ord
|
ss
|
λ-invariant(s) |
2
|
-
|
1,1
|
1
|
2
|
2
|
1,1
|
1
|
1,1
|
1,1
|
1
|
1
|
1
|
1
|
1,1
|
μ-invariant(s) |
0
|
-
|
0,0
|
0
|
0
|
0
|
0,0
|
0
|
0,0
|
0,0
|
0
|
0
|
0
|
0
|
0,0
|
An entry - indicates that the invariants are not computed because the reduction is additive.
p-adic regulators
p-adic regulators are not yet computed for curves that are not Γ0-optimal.