Properties

Label 2574.t
Number of curves $4$
Conductor $2574$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("t1")
 
E.isogeny_class()
 

Elliptic curves in class 2574.t

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2574.t1 2574t4 \([1, -1, 1, -44951, 3679431]\) \(13778603383488553/13703976\) \(9990198504\) \([2]\) \(6144\) \(1.2114\)  
2574.t2 2574t3 \([1, -1, 1, -6791, -134553]\) \(47504791830313/16490207448\) \(12021361229592\) \([2]\) \(6144\) \(1.2114\)  
2574.t3 2574t2 \([1, -1, 1, -2831, 57111]\) \(3440899317673/106007616\) \(77279552064\) \([2, 2]\) \(3072\) \(0.86486\)  
2574.t4 2574t1 \([1, -1, 1, 49, 2967]\) \(18191447/5271552\) \(-3842961408\) \([2]\) \(1536\) \(0.51829\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 2574.t have rank \(1\).

Complex multiplication

The elliptic curves in class 2574.t do not have complex multiplication.

Modular form 2574.2.a.t

sage: E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 2 q^{10} - q^{11} - q^{13} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.