Show commands:
SageMath
E = EllipticCurve("t1")
E.isogeny_class()
Elliptic curves in class 2574.t
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
2574.t1 | 2574t4 | \([1, -1, 1, -44951, 3679431]\) | \(13778603383488553/13703976\) | \(9990198504\) | \([2]\) | \(6144\) | \(1.2114\) | |
2574.t2 | 2574t3 | \([1, -1, 1, -6791, -134553]\) | \(47504791830313/16490207448\) | \(12021361229592\) | \([2]\) | \(6144\) | \(1.2114\) | |
2574.t3 | 2574t2 | \([1, -1, 1, -2831, 57111]\) | \(3440899317673/106007616\) | \(77279552064\) | \([2, 2]\) | \(3072\) | \(0.86486\) | |
2574.t4 | 2574t1 | \([1, -1, 1, 49, 2967]\) | \(18191447/5271552\) | \(-3842961408\) | \([2]\) | \(1536\) | \(0.51829\) | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 2574.t have rank \(1\).
Complex multiplication
The elliptic curves in class 2574.t do not have complex multiplication.Modular form 2574.2.a.t
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.