Properties

Label 25688c
Number of curves $1$
Conductor $25688$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 25688c1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + 2 T + 3 T^{2}\) 1.3.c
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(7\) \( 1 - 3 T + 7 T^{2}\) 1.7.ad
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25688c do not have complex multiplication.

Modular form 25688.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - q^{5} - q^{7} - 2 q^{9} - 2 q^{11} - q^{15} - 7 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 25688c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25688.i1 25688c1 \([0, 1, 0, -27096, -4602064]\) \(-101306/361\) \(-7840203312441344\) \([]\) \(104832\) \(1.7357\) \(\Gamma_0(N)\)-optimal