Properties

Label 255162.bb
Number of curves $1$
Conductor $255162$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 255162.bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1 - T\)
\(23\)\(1 + T\)
\(43\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 255162.bb do not have complex multiplication.

Modular form 255162.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{3} + q^{4} - 2 q^{5} + q^{6} + q^{8} + q^{9} - 2 q^{10} - 3 q^{11} + q^{12} + 2 q^{13} - 2 q^{15} + q^{16} - q^{17} + q^{18} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 255162.bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
255162.bb1 255162bb1 \([1, 0, 0, -627774, 3904982118]\) \(-2340917377/562264578\) \(-6571860996664809117378\) \([]\) \(13523328\) \(2.8657\) \(\Gamma_0(N)\)-optimal