Properties

Label 254898.x
Number of curves $4$
Conductor $254898$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 254898.x have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(7\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 254898.x do not have complex multiplication.

Modular form 254898.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - 2 q^{5} - q^{8} + 2 q^{10} + 2 q^{13} + q^{16} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 254898.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
254898.x1 254898x4 \([1, -1, 0, -67380693, -212779082629]\) \(16342588257633/8185058\) \(16944589726514747056242\) \([2]\) \(28311552\) \(3.2180\)  
254898.x2 254898x2 \([1, -1, 0, -4930683, -2110218895]\) \(6403769793/2775556\) \(5745916239440986891044\) \([2, 2]\) \(14155776\) \(2.8714\)  
254898.x3 254898x1 \([1, -1, 0, -2381703, 1392589421]\) \(721734273/13328\) \(27591434523125987472\) \([2]\) \(7077888\) \(2.5248\) \(\Gamma_0(N)\)-optimal
254898.x4 254898x3 \([1, -1, 0, 16735647, -15651675145]\) \(250404380127/196003234\) \(-405763085026406162511666\) \([2]\) \(28311552\) \(3.2180\)