Properties

Label 254800.cc
Number of curves 11
Conductor 254800254800
CM no
Rank 11

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 254800.cc1 has rank 11.

L-function data

 
Bad L-factors:
Prime L-Factor
2211
5511
7711
13131T1 - T
 
Good L-factors:
Prime L-Factor Isogeny Class over Fp\mathbb{F}_p
33 1+T+3T2 1 + T + 3 T^{2} 1.3.b
1111 1+T+11T2 1 + T + 11 T^{2} 1.11.b
1717 17T+17T2 1 - 7 T + 17 T^{2} 1.17.ah
1919 1+3T+19T2 1 + 3 T + 19 T^{2} 1.19.d
2323 1+23T2 1 + 23 T^{2} 1.23.a
2929 1+4T+29T2 1 + 4 T + 29 T^{2} 1.29.e
\cdots\cdots\cdots
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 254800.cc do not have complex multiplication.

Modular form 254800.2.a.cc

Copy content sage:E.q_eigenform(10)
 
qq32q9q11+q13+7q173q19+O(q20)q - q^{3} - 2 q^{9} - q^{11} + q^{13} + 7 q^{17} - 3 q^{19} + O(q^{20}) Copy content Toggle raw display

Elliptic curves in class 254800.cc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
254800.cc1 254800cc1 [0,1,0,9392,3864512][0, -1, 0, 9392, 3864512] 304175/21632304175/21632 6515156910080000-6515156910080000 [][] 11612161161216 1.71401.7140 Γ0(N)\Gamma_0(N)-optimal