Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-104486x+12930083\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-104486xz^2+12930083z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-135413883x+605297168982\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{4}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(161, 479)$ | $0.95737516804315510056677899359$ | $\infty$ |
$(281, 2279)$ | $0$ | $4$ |
Integral points
\( \left(-203, 5183\right) \), \( \left(-203, -4981\right) \), \( \left(-49, 4259\right) \), \( \left(-49, -4211\right) \), \( \left(161, 479\right) \), \( \left(161, -641\right) \), \( \left(193, -97\right) \), \( \left(229, 923\right) \), \( \left(229, -1153\right) \), \( \left(281, 2279\right) \), \( \left(281, -2561\right) \), \( \left(3911, 241859\right) \), \( \left(3911, -245771\right) \)
Invariants
Conductor: | $N$ | = | \( 25410 \) | = | $2 \cdot 3 \cdot 5 \cdot 7 \cdot 11^{2}$ |
|
Discriminant: | $\Delta$ | = | $293336487628800$ | = | $2^{12} \cdot 3 \cdot 5^{2} \cdot 7^{2} \cdot 11^{7} $ |
|
j-invariant: | $j$ | = | \( \frac{71210194441849}{165580800} \) | = | $2^{-12} \cdot 3^{-1} \cdot 5^{-2} \cdot 7^{-2} \cdot 11^{-1} \cdot 181^{3} \cdot 229^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6566063885559178101469752858$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.45765875215673253811600349682$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9292939941495105$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.563195685593382$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.95737516804315510056677899359$ |
|
Real period: | $\Omega$ | ≈ | $0.54821924602074533710067057784$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 192 $ = $ ( 2^{2} \cdot 3 )\cdot1\cdot2\cdot2\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $4$ |
|
Special value: | $ L'(E,1)$ | ≈ | $6.2982179134032342634396817640 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 6.298217913 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.548219 \cdot 0.957375 \cdot 192}{4^2} \\ & \approx 6.298217913\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 184320 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 5 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $12$ | $I_{12}$ | split multiplicative | -1 | 1 | 12 | 12 |
$3$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
$11$ | $4$ | $I_{1}^{*}$ | additive | -1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.7 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 264 = 2^{3} \cdot 3 \cdot 11 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 107 & 102 \\ 170 & 35 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 258 & 259 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 160 & 261 \\ 67 & 262 \end{array}\right),\left(\begin{array}{rr} 257 & 8 \\ 256 & 9 \end{array}\right),\left(\begin{array}{rr} 169 & 168 \\ 46 & 175 \end{array}\right),\left(\begin{array}{rr} 92 & 1 \\ 199 & 6 \end{array}\right)$.
The torsion field $K:=\Q(E[264])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/264\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 363 = 3 \cdot 11^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 4235 = 5 \cdot 7 \cdot 11^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 5082 = 2 \cdot 3 \cdot 7 \cdot 11^{2} \) |
$7$ | nonsplit multiplicative | $8$ | \( 3630 = 2 \cdot 3 \cdot 5 \cdot 11^{2} \) |
$11$ | additive | $72$ | \( 210 = 2 \cdot 3 \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 25410bm
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 2310c1, its twist by $-11$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{4}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{33}) \) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | 4.4.6388800.1 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.367350888960000.2 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | 8.0.104966417977344.33 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/16\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | nonsplit | nonsplit | nonsplit | add | ord | ord | ss | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | 6 | 1 | 1 | 1 | - | 3 | 1 | 1,1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | 0 | 0 | 0 | - | 0 | 0 | 0,0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.