Properties

Label 25410.o
Number of curves $6$
Conductor $25410$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25410.o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(7\)\(1 + T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25410.o do not have complex multiplication.

Modular form 25410.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{5} + q^{6} - q^{7} - q^{8} + q^{9} - q^{10} - q^{12} + 2 q^{13} + q^{14} - q^{15} + q^{16} - 2 q^{17} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrrrr} 1 & 8 & 4 & 2 & 4 & 8 \\ 8 & 1 & 2 & 4 & 8 & 4 \\ 4 & 2 & 1 & 2 & 4 & 2 \\ 2 & 4 & 2 & 1 & 2 & 4 \\ 4 & 8 & 4 & 2 & 1 & 8 \\ 8 & 4 & 2 & 4 & 8 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 25410.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25410.o1 25410m4 \([1, 1, 0, -10794522532, -431675891342384]\) \(78519570041710065450485106721/96428056919040\) \(170828184943551421440\) \([2]\) \(22118400\) \(4.0564\)  
25410.o2 25410m6 \([1, 1, 0, -3174871812, 63020871963504]\) \(1997773216431678333214187041/187585177195046990066400\) \(332318584096834640769021650400\) \([2]\) \(44236800\) \(4.4030\)  
25410.o3 25410m3 \([1, 1, 0, -705019812, -6104851842096]\) \(21876183941534093095979041/3572502915711058560000\) \(6328906837859998613612160000\) \([2, 2]\) \(22118400\) \(4.0564\)  
25410.o4 25410m2 \([1, 1, 0, -674663332, -6745027506224]\) \(19170300594578891358373921/671785075055001600\) \(1190108239349513689497600\) \([2, 2]\) \(11059200\) \(3.7098\)  
25410.o5 25410m1 \([1, 1, 0, -40274852, -115287257136]\) \(-4078208988807294650401/880065599546327040\) \(-1559089893597890677309440\) \([2]\) \(5529600\) \(3.3632\) \(\Gamma_0(N)\)-optimal
25410.o6 25410m5 \([1, 1, 0, 1279128508, -34258726013904]\) \(130650216943167617311657439/361816948816603087500000\) \(-640980795662490182294587500000\) \([2]\) \(44236800\) \(4.4030\)