Properties

Label 25410.bd
Number of curves $4$
Conductor $25410$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bd1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25410.bd have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(11\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25410.bd do not have complex multiplication.

Modular form 25410.2.a.bd

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{5} - q^{6} + q^{7} - q^{8} + q^{9} + q^{10} + q^{12} + 2 q^{13} - q^{14} - q^{15} + q^{16} - 6 q^{17} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 25410.bd

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25410.bd1 25410bc4 \([1, 0, 1, -1277760124, 17580024616922]\) \(130231365028993807856757649/4753980000\) \(8421965562780000\) \([2]\) \(7372800\) \(3.4742\)  
25410.bd2 25410bc3 \([1, 0, 1, -81350844, 263894014426]\) \(33608860073906150870929/2466782226562500000\) \(4370055188071289062500000\) \([2]\) \(7372800\) \(3.4742\)  
25410.bd3 25410bc2 \([1, 0, 1, -79860124, 274682056922]\) \(31794905164720991157649/192099600000000\) \(340316159475600000000\) \([2, 2]\) \(3686400\) \(3.1276\)  
25410.bd4 25410bc1 \([1, 0, 1, -4898204, 4459327706]\) \(-7336316844655213969/604492922880000\) \(-1070896086950215680000\) \([2]\) \(1843200\) \(2.7810\) \(\Gamma_0(N)\)-optimal