Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy=x^3-24432x-1471934\)
|
(homogenize, simplify) |
\(y^2z+xyz=x^3-24432xz^2-1471934z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-31663899x-68579561034\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-36131/400, 361313/8000)$ | $3.8820854184449827443244665719$ | $\infty$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 254 \) | = | $2 \cdot 127$ |
|
Discriminant: | $\Delta$ | = | $254$ | = | $2 \cdot 127 $ |
|
j-invariant: | $j$ | = | \( \frac{1612879352406519553}{254} \) | = | $2^{-1} \cdot 19^{3} \cdot 127^{-1} \cdot 61723^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.77766540441808947130714243447$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.77766540441808947130714243447$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0084544840653684$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $7.571251915010674$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.8820854184449827443244665719$ |
|
Real period: | $\Omega$ | ≈ | $0.38186487023451899594637135274$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $1.4824320445538117123254719102 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 1.482432045 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.381865 \cdot 3.882085 \cdot 1}{1^2} \\ & \approx 1.482432045\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 324 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is semistable. There are 2 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$127$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$3$ | 3B.1.2 | 9.24.0.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9144 = 2^{3} \cdot 3^{2} \cdot 127 \), index $144$, genus $3$, and generators
$\left(\begin{array}{rr} 1 & 18 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 9127 & 18 \\ 9126 & 19 \end{array}\right),\left(\begin{array}{rr} 1 & 18 \\ 10 & 181 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 81 & 73 \end{array}\right),\left(\begin{array}{rr} 6859 & 4590 \\ 0 & 5843 \end{array}\right),\left(\begin{array}{rr} 10 & 9 \\ 4563 & 9136 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 18 & 1 \end{array}\right),\left(\begin{array}{rr} 4582 & 9 \\ 6849 & 9136 \end{array}\right),\left(\begin{array}{rr} 8140 & 9 \\ 6831 & 9124 \end{array}\right)$.
The torsion field $K:=\Q(E[9144])$ is a degree-$10703104376832$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9144\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 127 \) |
$127$ | split multiplicative | $128$ | \( 2 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3 and 9.
Its isogeny class 254.b
consists of 3 curves linked by isogenies of
degrees dividing 9.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-3}) \) | \(\Z/3\Z\) | 2.0.3.1-64516.2-a5 |
$3$ | 3.3.1016.1 | \(\Z/2\Z\) | not in database |
$3$ | 3.1.1741932.2 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.1048772096.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.9102981277872.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$6$ | 6.0.5120426968803.4 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.5079473712.7 | \(\Z/9\Z\) | not in database |
$6$ | 6.0.27870912.1 | \(\Z/6\Z\) | not in database |
$9$ | 9.3.85922574791783182737408.1 | \(\Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.44541362292531293112989653040278120561815552.3 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.199332599188938520905221346778418006983629078528.1 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$18$ | 18.0.567630721909125709921509225786979402699474993152.1 | \(\Z/18\Z\) | not in database |
$18$ | 18.0.558587193071319819115191236253322347282432.1 | \(\Z/18\Z\) | not in database |
$18$ | 18.6.120012990089458688734639933823331967463921270390784.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 | 127 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | split |
$\lambda$-invariant(s) | 2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 |
$\mu$-invariant(s) | 0 | 2 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.