Properties

Label 25392q
Number of curves $4$
Conductor $25392$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("q1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 25392q have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 - 10 T + 29 T^{2}\) 1.29.ak
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25392q do not have complex multiplication.

Modular form 25392.2.a.q

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} - 2 q^{5} - 4 q^{7} + q^{9} - 4 q^{11} - 2 q^{13} - 2 q^{15} + 2 q^{17} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 25392q

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25392.n3 25392q1 \([0, 1, 0, -109679, -14017344]\) \(61604313088/621\) \(1470884593104\) \([2]\) \(101376\) \(1.4937\) \(\Gamma_0(N)\)-optimal
25392.n2 25392q2 \([0, 1, 0, -112324, -13308484]\) \(4135597648/385641\) \(14614709317081344\) \([2, 2]\) \(202752\) \(1.8402\)  
25392.n4 25392q3 \([0, 1, 0, 131016, -62852508]\) \(1640689628/12223143\) \(-1852890972548226048\) \([4]\) \(405504\) \(2.1868\)  
25392.n1 25392q4 \([0, 1, 0, -397984, 81644900]\) \(45989074372/7555707\) \(1145360182034967552\) \([2]\) \(405504\) \(2.1868\)