Show commands: SageMath
Rank
The elliptic curves in class 25392q have rank \(1\).
L-function data
Bad L-factors: |
| |||||||||||||||||||||||||||
Good L-factors: |
| |||||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 25392q do not have complex multiplication.Modular form 25392.2.a.q
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 25392q
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
25392.n3 | 25392q1 | \([0, 1, 0, -109679, -14017344]\) | \(61604313088/621\) | \(1470884593104\) | \([2]\) | \(101376\) | \(1.4937\) | \(\Gamma_0(N)\)-optimal |
25392.n2 | 25392q2 | \([0, 1, 0, -112324, -13308484]\) | \(4135597648/385641\) | \(14614709317081344\) | \([2, 2]\) | \(202752\) | \(1.8402\) | |
25392.n4 | 25392q3 | \([0, 1, 0, 131016, -62852508]\) | \(1640689628/12223143\) | \(-1852890972548226048\) | \([4]\) | \(405504\) | \(2.1868\) | |
25392.n1 | 25392q4 | \([0, 1, 0, -397984, 81644900]\) | \(45989074372/7555707\) | \(1145360182034967552\) | \([2]\) | \(405504\) | \(2.1868\) |