Properties

Label 25350.x
Number of curves $1$
Conductor $25350$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 25350.x1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 5 T + 7 T^{2}\) 1.7.f
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25350.x do not have complex multiplication.

Modular form 25350.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - 5 q^{7} - q^{8} + q^{9} - 3 q^{11} + q^{12} + 5 q^{14} + q^{16} - 4 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 25350.x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25350.x1 25350bv1 \([1, 0, 1, 9, 28]\) \(4459/18\) \(-380250\) \([]\) \(4992\) \(-0.24662\) \(\Gamma_0(N)\)-optimal