Properties

Label 25350.p
Number of curves $1$
Conductor $25350$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 25350.p1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 7 T + 29 T^{2}\) 1.29.h
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 25350.p do not have complex multiplication.

Modular form 25350.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + q^{7} - q^{8} + q^{9} + 5 q^{11} - q^{12} - q^{14} + q^{16} + 5 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 25350.p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
25350.p1 25350p1 \([1, 1, 0, -3487825, 2507807125]\) \(-2488672890625/2426112\) \(-4574366889300000000\) \([]\) \(967680\) \(2.5013\) \(\Gamma_0(N)\)-optimal