Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3+x^2-57626x-4610131\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3+x^2z-57626xz^2-4610131z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-74683323x-213970013802\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-717/4, 713/8)$ | $0$ | $2$ |
Integral points
None
Invariants
Conductor: | $N$ | = | \( 25230 \) | = | $2 \cdot 3 \cdot 5 \cdot 29^{2}$ |
|
Discriminant: | $\Delta$ | = | $3161135005355610$ | = | $2 \cdot 3^{12} \cdot 5 \cdot 29^{6} $ |
|
j-invariant: | $j$ | = | \( \frac{35578826569}{5314410} \) | = | $2^{-1} \cdot 3^{-12} \cdot 5^{-1} \cdot 11^{3} \cdot 13^{3} \cdot 23^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.6985077558755338481832557193$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.014859840882296834591619703120$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0339287621454463$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.39026417535891$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.31122058277591499563785923424$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 4 $ = $ 1\cdot2\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.2448823311036599825514369370 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 1.244882331 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.311221 \cdot 1.000000 \cdot 4}{2^2} \\ & \approx 1.244882331\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 193536 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$3$ | $2$ | $I_{12}$ | nonsplit multiplicative | 1 | 1 | 12 | 12 |
$5$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$29$ | $2$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
$3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 3480 = 2^{3} \cdot 3 \cdot 5 \cdot 29 \), index $384$, genus $5$, and generators
$\left(\begin{array}{rr} 3457 & 24 \\ 3456 & 25 \end{array}\right),\left(\begin{array}{rr} 871 & 2784 \\ 870 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 12 & 145 \end{array}\right),\left(\begin{array}{rr} 1741 & 2784 \\ 812 & 2669 \end{array}\right),\left(\begin{array}{rr} 15 & 106 \\ 2174 & 1211 \end{array}\right),\left(\begin{array}{rr} 2872 & 2523 \\ 957 & 3394 \end{array}\right),\left(\begin{array}{rr} 839 & 0 \\ 0 & 3479 \end{array}\right),\left(\begin{array}{rr} 1 & 24 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 3162 & 319 \\ 2117 & 3452 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 24 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[3480])$ is a degree-$62860492800$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/3480\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 4205 = 5 \cdot 29^{2} \) |
$3$ | nonsplit multiplicative | $4$ | \( 8410 = 2 \cdot 5 \cdot 29^{2} \) |
$5$ | nonsplit multiplicative | $6$ | \( 5046 = 2 \cdot 3 \cdot 29^{2} \) |
$29$ | additive | $422$ | \( 30 = 2 \cdot 3 \cdot 5 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3, 4, 6 and 12.
Its isogeny class 25230p
consists of 8 curves linked by isogenies of
degrees dividing 12.
Twists
The minimal quadratic twist of this elliptic curve is 30a4, its twist by $29$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{10}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-145}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-58}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{29}) \) | \(\Z/6\Z\) | 2.2.29.1-900.1-m4 |
$4$ | \(\Q(\sqrt{10}, \sqrt{-58})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{10}, \sqrt{29})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$4$ | \(\Q(\sqrt{-5}, \sqrt{29})\) | \(\Z/12\Z\) | not in database |
$4$ | \(\Q(\sqrt{-2}, \sqrt{29})\) | \(\Z/12\Z\) | not in database |
$6$ | 6.0.6585030000.2 | \(\Z/6\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.3666544704000000.175 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.28970229760000.22 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$16$ | deg 16 | \(\Z/24\Z\) | not in database |
$18$ | 18.6.298689270843399995317802498100000000.1 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 29 |
---|---|---|---|---|
Reduction type | split | nonsplit | nonsplit | add |
$\lambda$-invariant(s) | 2 | 0 | 0 | - |
$\mu$-invariant(s) | 1 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.