Properties

Label 249900bb
Number of curves $1$
Conductor $249900$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bb1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 249900bb1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1\)
\(17\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(19\) \( 1 + 3 T + 19 T^{2}\) 1.19.d
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 249900bb do not have complex multiplication.

Modular form 249900.2.a.bb

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - q^{11} - 7 q^{13} - q^{17} - 3 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 249900bb

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
249900.bb1 249900bb1 \([0, -1, 0, 42467, -3641063]\) \(17997824/22491\) \(-10584174636000000\) \([]\) \(1935360\) \(1.7609\) \(\Gamma_0(N)\)-optimal