Properties

Label 24843s
Number of curves $4$
Conductor $24843$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 24843s have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(5\) \( 1 - T + 5 T^{2}\) 1.5.ab
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 24843s do not have complex multiplication.

Modular form 24843.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} - q^{4} + 2 q^{5} - q^{6} + 3 q^{8} + q^{9} - 2 q^{10} - 4 q^{11} - q^{12} + 2 q^{15} - q^{16} - 2 q^{17} - q^{18} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 24843s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
24843.h4 24843s1 \([1, 0, 0, 3968, 205295]\) \(12167/39\) \(-22146900829599\) \([2]\) \(48384\) \(1.2439\) \(\Gamma_0(N)\)-optimal
24843.h3 24843s2 \([1, 0, 0, -37437, 2399760]\) \(10218313/1521\) \(863729132354361\) \([2, 2]\) \(96768\) \(1.5905\)  
24843.h2 24843s3 \([1, 0, 0, -161652, -22666827]\) \(822656953/85683\) \(48656741122629003\) \([2]\) \(193536\) \(1.9371\)  
24843.h1 24843s4 \([1, 0, 0, -575702, 168077727]\) \(37159393753/1053\) \(597966322399173\) \([2]\) \(193536\) \(1.9371\)