Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+1700041x-909217393\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+1700041xz^2-909217393z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+27200661x-58162712474\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{3}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(667, 22494)$ | $5.6960208313956477632727161532$ | $\infty$ |
$(1027, 43294)$ | $0$ | $3$ |
Integral points
\( \left(667, 22494\right) \), \( \left(667, -23162\right) \), \( \left(1027, 43294\right) \), \( \left(1027, -44322\right) \)
Invariants
Conductor: | $N$ | = | \( 24642 \) | = | $2 \cdot 3^{2} \cdot 37^{2}$ |
|
Discriminant: | $\Delta$ | = | $-671245276783157968896$ | = | $-1 \cdot 2^{18} \cdot 3^{6} \cdot 37^{8} $ |
|
j-invariant: | $j$ | = | \( \frac{212207543}{262144} \) | = | $2^{-18} \cdot 37 \cdot 179^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6823971714494315419293125232$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.27418758131410626668037387595$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9847633793256833$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.417056516563141$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $5.6960208313956477632727161532$ |
|
Real period: | $\Omega$ | ≈ | $0.086484417633636057509701836103$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 108 $ = $ ( 2 \cdot 3^{2} )\cdot2\cdot3 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $3$ |
|
Special value: | $ L'(E,1)$ | ≈ | $5.9114045331877449149120064052 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 5.911404533 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.086484 \cdot 5.696021 \cdot 108}{3^2} \\ & \approx 5.911404533\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1534464 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $18$ | $I_{18}$ | split multiplicative | -1 | 1 | 18 | 18 |
$3$ | $2$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$37$ | $3$ | $IV^{*}$ | additive | 1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2G | 4.2.0.1 |
$3$ | 3B.1.1 | 9.24.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 1332 = 2^{2} \cdot 3^{2} \cdot 37 \), index $288$, genus $6$, and generators
$\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 70 & 1323 \\ 327 & 985 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 12 & 433 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 19 & 27 \\ 657 & 1144 \end{array}\right),\left(\begin{array}{rr} 1297 & 36 \\ 1296 & 37 \end{array}\right),\left(\begin{array}{rr} 125 & 1323 \\ 381 & 844 \end{array}\right),\left(\begin{array}{rr} 13 & 6 \\ 1282 & 1309 \end{array}\right),\left(\begin{array}{rr} 685 & 36 \\ 243 & 811 \end{array}\right)$.
The torsion field $K:=\Q(E[1332])$ is a degree-$2361540096$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/1332\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | split multiplicative | $4$ | \( 12321 = 3^{2} \cdot 37^{2} \) |
$3$ | additive | $2$ | \( 1369 = 37^{2} \) |
$37$ | additive | $506$ | \( 18 = 2 \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 24642t
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 2738d2, its twist by $-111$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{3}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.5476.1 | \(\Z/6\Z\) | not in database |
$6$ | 6.0.119946304.2 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$6$ | 6.0.50602347.2 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$9$ | 9.3.4090596625576107.4 | \(\Z/9\Z\) | not in database |
$12$ | deg 12 | \(\Z/12\Z\) | not in database |
$18$ | 18.0.50198942259523899975028947826347.2 | \(\Z/3\Z \oplus \Z/9\Z\) | not in database |
$18$ | 18.0.530727912779568801529540608.2 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | split | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | add | ord | ord | ord |
$\lambda$-invariant(s) | 6 | - | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 3 | - | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | - | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.