Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2=x^3+x^2+145375x-28962977\)
|
(homogenize, simplify) |
|
\(y^2z=x^3+x^2z+145375xz^2-28962977z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+11775348x-21149336304\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(181, 1820)$ | $3.4544527409227047093340022197$ | $\infty$ |
| $(167, 0)$ | $0$ | $2$ |
Integral points
\( \left(167, 0\right) \), \((181,\pm 1820)\), \((16551,\pm 2129920)\)
Invariants
| Conductor: | $N$ | = | \( 24640 \) | = | $2^{6} \cdot 5 \cdot 7 \cdot 11$ |
|
| Discriminant: | $\Delta$ | = | $-560226944155648000$ | = | $-1 \cdot 2^{36} \cdot 5^{3} \cdot 7^{2} \cdot 11^{3} $ |
|
| j-invariant: | $j$ | = | \( \frac{1296134247276791}{2137096192000} \) | = | $2^{-18} \cdot 5^{-3} \cdot 7^{-2} \cdot 11^{-3} \cdot 13^{3} \cdot 8387^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.0906657374729185725718250016$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.0509449666330006084459768194$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9674595750802547$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.735853253679326$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $3.4544527409227047093340022197$ |
|
| Real period: | $\Omega$ | ≈ | $0.15346783067903903182321564013$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2^{2}\cdot3\cdot2\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $3.1808842099960076048848622522 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.180884210 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.153468 \cdot 3.454453 \cdot 24}{2^2} \\ & \approx 3.180884210\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 331776 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $4$ | $I_{26}^{*}$ | additive | -1 | 6 | 36 | 18 |
| $5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
| $7$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $11$ | $1$ | $I_{3}$ | nonsplit multiplicative | 1 | 1 | 3 | 3 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
| $3$ | 3B | 3.4.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 9240 = 2^{3} \cdot 3 \cdot 5 \cdot 7 \cdot 11 \), index $96$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 6 \\ 6 & 37 \end{array}\right),\left(\begin{array}{rr} 4619 & 9228 \\ 9234 & 9167 \end{array}\right),\left(\begin{array}{rr} 1 & 12 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 9190 & 9231 \end{array}\right),\left(\begin{array}{rr} 5001 & 6542 \\ 2674 & 4219 \end{array}\right),\left(\begin{array}{rr} 6161 & 12 \\ 1540 & 1 \end{array}\right),\left(\begin{array}{rr} 6730 & 3 \\ 5853 & 9232 \end{array}\right),\left(\begin{array}{rr} 10 & 3 \\ 1821 & 9232 \end{array}\right),\left(\begin{array}{rr} 5281 & 12 \\ 3966 & 73 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 12 & 1 \end{array}\right),\left(\begin{array}{rr} 9229 & 12 \\ 9228 & 13 \end{array}\right)$.
The torsion field $K:=\Q(E[9240])$ is a degree-$9809952768000$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/9240\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | additive | $2$ | \( 55 = 5 \cdot 11 \) |
| $3$ | good | $2$ | \( 448 = 2^{6} \cdot 7 \) |
| $5$ | split multiplicative | $6$ | \( 4928 = 2^{6} \cdot 7 \cdot 11 \) |
| $7$ | nonsplit multiplicative | $8$ | \( 3520 = 2^{6} \cdot 5 \cdot 11 \) |
| $11$ | nonsplit multiplicative | $12$ | \( 2240 = 2^{6} \cdot 5 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 3 and 6.
Its isogeny class 24640bs
consists of 4 curves linked by isogenies of
degrees dividing 6.
Twists
The minimal quadratic twist of this elliptic curve is 770b3, its twist by $-8$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-55}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{6}) \) | \(\Z/6\Z\) | not in database |
| $4$ | 4.2.172480.1 | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{6}, \sqrt{-55})\) | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $6$ | 6.0.896168448.4 | \(\Z/6\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.89991784960000.12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.2409697382400.8 | \(\Z/12\Z\) | not in database |
| $12$ | deg 12 | \(\Z/3\Z \oplus \Z/6\Z\) | not in database |
| $12$ | deg 12 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/12\Z\) | not in database |
| $18$ | 18.6.4520852673693560747403532367207694336000000000000.3 | \(\Z/18\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | add | ord | split | nonsplit | nonsplit | ord | ord | ord | ord | ss | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | - | 3 | 2 | 1 | 1 | 3 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.