Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
2450.a1 |
2450k1 |
2450.a |
2450k |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{11} \cdot 5^{10} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.2.0.1 |
|
$8$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$63360$ |
$2.014778$ |
$-1026590625/100352$ |
$1.12597$ |
$6.23737$ |
$[1, -1, 0, -220117, -42920459]$ |
\(y^2+xy=x^3-x^2-220117x-42920459\) |
8.2.0.a.1 |
$[]$ |
2450.b1 |
2450c1 |
2450.b |
2450c |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{7} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$140$ |
$96$ |
$2$ |
$0.158594245$ |
$1$ |
|
$10$ |
$20160$ |
$1.564850$ |
$-5154200289/20$ |
$1.12200$ |
$6.09789$ |
$[1, -1, 0, -161317, 24978841]$ |
\(y^2+xy=x^3-x^2-161317x+24978841\) |
7.24.0.a.2, 20.2.0.a.1, 28.48.0-7.a.2.4, 35.48.0-7.a.2.2, 140.96.2.? |
$[(184, 1133)]$ |
2450.b2 |
2450c2 |
2450.b |
2450c |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{14} \cdot 5^{13} \cdot 7^{8} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$140$ |
$96$ |
$2$ |
$1.110159720$ |
$1$ |
|
$4$ |
$141120$ |
$2.537804$ |
$1747829720511/1280000000$ |
$1.08633$ |
$6.84449$ |
$[1, -1, 0, 1124933, -236901659]$ |
\(y^2+xy=x^3-x^2+1124933x-236901659\) |
7.24.0.a.1, 20.2.0.a.1, 28.48.0-7.a.1.4, 35.48.0-7.a.1.2, 140.96.2.? |
$[(1654, 77573)]$ |
2450.c1 |
2450r1 |
2450.c |
2450r |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{9} \cdot 7^{10} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$2.286423385$ |
$1$ |
|
$4$ |
$40320$ |
$1.970009$ |
$1323/256$ |
$1.25294$ |
$6.01511$ |
$[1, -1, 0, 18758, -18059084]$ |
\(y^2+xy=x^3-x^2+18758x-18059084\) |
20.2.0.a.1 |
$[(244, 878)]$ |
2450.d1 |
2450i2 |
2450.d |
2450i |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{5} \cdot 5^{10} \cdot 7^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$53760$ |
$2.177052$ |
$544737993463/20000$ |
$1.00483$ |
$6.94445$ |
$[1, 0, 1, -1459001, -678414852]$ |
\(y^2+xy+y=x^3-1459001x-678414852\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[]$ |
2450.d2 |
2450i1 |
2450.d |
2450i |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{8} \cdot 7^{9} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$26880$ |
$1.830477$ |
$-115501303/25600$ |
$0.94412$ |
$5.90207$ |
$[1, 0, 1, -87001, -11622852]$ |
\(y^2+xy+y=x^3-87001x-11622852\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[]$ |
2450.e1 |
2450m2 |
2450.e |
2450m |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 5^{8} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 9.24.0.4 |
3B.1.2 |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$22680$ |
$1.813198$ |
$553463785/512$ |
$0.96151$ |
$6.22443$ |
$[1, 0, 1, -224201, -40846452]$ |
\(y^2+xy+y=x^3-224201x-40846452\) |
3.8.0-3.a.1.1, 8.2.0.b.1, 9.24.0-9.b.1.1, 24.16.0-24.b.1.4, 63.72.0-63.g.2.2, $\ldots$ |
$[]$ |
2450.e2 |
2450m1 |
2450.e |
2450m |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 5^{8} \cdot 7^{8} \) |
$0$ |
$\Z/3\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 9.24.0.2 |
3B.1.1 |
$504$ |
$144$ |
$2$ |
$1$ |
$1$ |
|
$2$ |
$7560$ |
$1.263893$ |
$46585/8$ |
$0.83046$ |
$5.02212$ |
$[1, 0, 1, -9826, 313548]$ |
\(y^2+xy+y=x^3-9826x+313548\) |
3.8.0-3.a.1.2, 8.2.0.b.1, 9.24.0-9.b.1.2, 24.16.0-24.b.1.8, 63.72.0-63.g.1.4, $\ldots$ |
$[]$ |
2450.f1 |
2450h2 |
2450.f |
2450h |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{9} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$30240$ |
$1.962063$ |
$-5452947409/250$ |
$0.98622$ |
$6.60383$ |
$[1, 0, 1, -601501, 179513898]$ |
\(y^2+xy+y=x^3-601501x+179513898\) |
3.4.0.a.1, 40.2.0.a.1, 105.8.0.?, 120.8.0.?, 168.8.0.?, $\ldots$ |
$[]$ |
2450.f2 |
2450h1 |
2450.f |
2450h |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 5^{7} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$10080$ |
$1.412756$ |
$-49/40$ |
$1.02061$ |
$5.15900$ |
$[1, 0, 1, -1251, 639398]$ |
\(y^2+xy+y=x^3-1251x+639398\) |
3.4.0.a.1, 40.2.0.a.1, 105.8.0.?, 120.8.0.?, 168.8.0.?, $\ldots$ |
$[]$ |
2450.g1 |
2450p2 |
2450.g |
2450p |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 5^{4} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$840$ |
$384$ |
$9$ |
$0.214947847$ |
$1$ |
|
$6$ |
$2160$ |
$0.796162$ |
$-349938025/8$ |
$1.05078$ |
$4.84204$ |
$[1, 1, 0, -6150, 183100]$ |
\(y^2+xy=x^3+x^2-6150x+183100\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.1, 21.8.0-3.a.1.2, $\ldots$ |
$[(55, 95)]$ |
2450.g2 |
2450p3 |
2450.g |
2450p |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{5} \cdot 5^{8} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$840$ |
$384$ |
$9$ |
$3.224217708$ |
$1$ |
|
$2$ |
$3600$ |
$1.051575$ |
$-121945/32$ |
$0.94334$ |
$4.69464$ |
$[1, 1, 0, -3700, -106000]$ |
\(y^2+xy=x^3+x^2-3700x-106000\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.4, 21.8.0-3.a.1.1, $\ldots$ |
$[(139, 1376)]$ |
2450.g3 |
2450p1 |
2450.g |
2450p |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{4} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.2 |
3B, 5B.4.2 |
$840$ |
$384$ |
$9$ |
$0.644843541$ |
$1$ |
|
$4$ |
$720$ |
$0.246855$ |
$-25/2$ |
$1.09044$ |
$3.36607$ |
$[1, 1, 0, -25, 575]$ |
\(y^2+xy=x^3+x^2-25x+575\) |
3.4.0.a.1, 5.12.0.a.2, 8.2.0.a.1, 15.96.1.a.2, 21.8.0-3.a.1.1, $\ldots$ |
$[(-1, 25)]$ |
2450.g4 |
2450p4 |
2450.g |
2450p |
$4$ |
$15$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{15} \cdot 5^{8} \cdot 7^{6} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3, 5$ |
8.2.0.1, 3.4.0.1, 5.12.0.1 |
3B, 5B.4.1 |
$840$ |
$384$ |
$9$ |
$1.074739236$ |
$1$ |
|
$4$ |
$10800$ |
$1.600880$ |
$46969655/32768$ |
$1.06296$ |
$5.40964$ |
$[1, 1, 0, 26925, 782125]$ |
\(y^2+xy=x^3+x^2+26925x+782125\) |
3.4.0.a.1, 5.12.0.a.1, 8.2.0.a.1, 15.96.1.a.3, 21.8.0-3.a.1.2, $\ldots$ |
$[(-15, 620)]$ |
2450.h1 |
2450d1 |
2450.h |
2450d |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 5^{2} \cdot 7^{10} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.2, 7.56.1.2 |
7Ns.3.1 |
$280$ |
$224$ |
$5$ |
$1$ |
$1$ |
|
$0$ |
$3528$ |
$1.048868$ |
$2268945/128$ |
$1.21697$ |
$4.78134$ |
$[1, -1, 0, -5252, 140496]$ |
\(y^2+xy=x^3-x^2-5252x+140496\) |
7.56.1.b.1, 8.2.0.b.1, 35.112.1-7.b.1.1, 56.112.5.t.1, 280.224.5.? |
$[]$ |
2450.i1 |
2450a1 |
2450.i |
2450a |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{7} \cdot 5^{2} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 7$ |
8.2.0.2, 7.56.1.2 |
7Ns.3.1 |
$280$ |
$224$ |
$5$ |
$0.514615865$ |
$1$ |
|
$4$ |
$504$ |
$0.075913$ |
$2268945/128$ |
$1.21697$ |
$3.28522$ |
$[1, -1, 0, -107, -379]$ |
\(y^2+xy=x^3-x^2-107x-379\) |
7.56.1.b.1, 8.2.0.b.1, 35.112.1-7.b.1.1, 56.112.5.t.1, 280.224.5.? |
$[(-5, 6)]$ |
2450.j1 |
2450o2 |
2450.j |
2450o |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$4.423468904$ |
$1$ |
|
$2$ |
$1872$ |
$0.749033$ |
$-5745702166029/8192$ |
$1.08763$ |
$4.88216$ |
$[1, -1, 0, -6827, -215419]$ |
\(y^2+xy=x^3-x^2-6827x-215419\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.2, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(139, 1158)]$ |
2450.j2 |
2450o1 |
2450.j |
2450o |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{3} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$0.340266838$ |
$1$ |
|
$4$ |
$144$ |
$-0.533442$ |
$-189/2$ |
$0.91737$ |
$2.16832$ |
$[1, -1, 0, -2, 6]$ |
\(y^2+xy=x^3-x^2-2x+6\) |
13.14.0.a.1, 40.2.0.a.1, 65.28.0.a.1, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[(-1, 3)]$ |
2450.k1 |
2450l2 |
2450.k |
2450l |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{13} \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$13104$ |
$1.721987$ |
$-5745702166029/8192$ |
$1.08763$ |
$6.37828$ |
$[1, -1, 0, -334532, 74557776]$ |
\(y^2+xy=x^3-x^2-334532x+74557776\) |
13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.2.2, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[]$ |
2450.k2 |
2450l1 |
2450.k |
2450l |
$2$ |
$13$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{3} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$13$ |
13.14.0.1 |
13B |
$3640$ |
$336$ |
$9$ |
$1$ |
$1$ |
|
$0$ |
$1008$ |
$0.439513$ |
$-189/2$ |
$0.91737$ |
$3.66444$ |
$[1, -1, 0, -107, -1849]$ |
\(y^2+xy=x^3-x^2-107x-1849\) |
13.14.0.a.1, 40.2.0.a.1, 65.56.0-65.a.1.2, 91.42.0.?, 104.28.0.?, $\ldots$ |
$[]$ |
2450.l1 |
2450e4 |
2450.l |
2450e |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 5^{8} \cdot 7^{10} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.15 |
2B |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18432$ |
$1.816662$ |
$2121328796049/120050$ |
$1.01959$ |
$6.37060$ |
$[1, -1, 0, -327917, 72354491]$ |
\(y^2+xy=x^3-x^2-327917x+72354491\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.k.1, 40.24.0-8.k.1.3, 56.24.0.v.1, $\ldots$ |
$[]$ |
2450.l2 |
2450e3 |
2450.l |
2450e |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 5^{14} \cdot 7^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$18432$ |
$1.816662$ |
$74565301329/5468750$ |
$0.99962$ |
$5.94156$ |
$[1, -1, 0, -107417, -12636009]$ |
\(y^2+xy=x^3-x^2-107417x-12636009\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 20.12.0-4.c.1.1, 40.24.0-8.p.1.6, $\ldots$ |
$[]$ |
2450.l3 |
2450e2 |
2450.l |
2450e |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{2} \cdot 5^{10} \cdot 7^{8} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.3 |
2Cs |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$9216$ |
$1.470089$ |
$611960049/122500$ |
$1.02632$ |
$5.32613$ |
$[1, -1, 0, -21667, 998241]$ |
\(y^2+xy=x^3-x^2-21667x+998241\) |
2.6.0.a.1, 8.12.0.a.1, 20.12.0-2.a.1.1, 28.12.0.b.1, 40.24.0-8.a.1.3, $\ldots$ |
$[]$ |
2450.l4 |
2450e1 |
2450.l |
2450e |
$4$ |
$4$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{4} \cdot 5^{8} \cdot 7^{7} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.12.0.9 |
2B |
$280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$4608$ |
$1.123514$ |
$1367631/2800$ |
$1.00023$ |
$4.66334$ |
$[1, -1, 0, 2833, 91741]$ |
\(y^2+xy=x^3-x^2+2833x+91741\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0.p.1, 14.6.0.b.1, 20.12.0-4.c.1.2, $\ldots$ |
$[]$ |
2450.m1 |
2450f2 |
2450.m |
2450f |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{2} \cdot 7^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$3456$ |
$0.975090$ |
$-417267265/235298$ |
$0.94642$ |
$4.53928$ |
$[1, 0, 1, -2231, 56788]$ |
\(y^2+xy+y=x^3-2231x+56788\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? |
$[]$ |
2450.m2 |
2450f1 |
2450.m |
2450f |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 5^{2} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$1152$ |
$0.425784$ |
$397535/392$ |
$1.09655$ |
$3.56073$ |
$[1, 0, 1, 219, -1032]$ |
\(y^2+xy+y=x^3+219x-1032\) |
3.4.0.a.1, 8.2.0.a.1, 24.8.0.a.1, 105.8.0.?, 840.16.0.? |
$[]$ |
2450.n1 |
2450g2 |
2450.n |
2450g |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{5} \cdot 5^{10} \cdot 7^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$7680$ |
$1.204094$ |
$544737993463/20000$ |
$1.00483$ |
$5.44833$ |
$[1, 1, 0, -29775, 1965125]$ |
\(y^2+xy=x^3+x^2-29775x+1965125\) |
2.3.0.a.1, 8.6.0.e.1, 28.6.0.c.1, 56.12.0.bd.1 |
$[]$ |
2450.n2 |
2450g1 |
2450.n |
2450g |
$2$ |
$2$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{10} \cdot 5^{8} \cdot 7^{3} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2$ |
8.6.0.3 |
2B |
$56$ |
$12$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$3840$ |
$0.857521$ |
$-115501303/25600$ |
$0.94412$ |
$4.40596$ |
$[1, 1, 0, -1775, 33125]$ |
\(y^2+xy=x^3+x^2-1775x+33125\) |
2.3.0.a.1, 8.6.0.e.1, 14.6.0.b.1, 56.12.0.bc.1 |
$[]$ |
2450.o1 |
2450q2 |
2450.o |
2450q |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$0.828230079$ |
$1$ |
|
$2$ |
$3240$ |
$0.840243$ |
$553463785/512$ |
$0.96151$ |
$4.72832$ |
$[1, 1, 0, -4575, 117125]$ |
\(y^2+xy=x^3+x^2-4575x+117125\) |
3.4.0.a.1, 8.2.0.b.1, 9.12.0.b.1, 21.8.0-3.a.1.2, 24.8.0.b.1, $\ldots$ |
$[(35, 20)]$ |
2450.o2 |
2450q1 |
2450.o |
2450q |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 5^{8} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 9.12.0.2 |
3B |
$504$ |
$144$ |
$2$ |
$2.484690237$ |
$1$ |
|
$2$ |
$1080$ |
$0.290937$ |
$46585/8$ |
$0.83046$ |
$3.52600$ |
$[1, 1, 0, -200, -1000]$ |
\(y^2+xy=x^3+x^2-200x-1000\) |
3.4.0.a.1, 8.2.0.b.1, 9.12.0.b.1, 21.8.0-3.a.1.1, 24.8.0.b.1, $\ldots$ |
$[(-11, 1)]$ |
2450.p1 |
2450b2 |
2450.p |
2450b |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{9} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$3.528039834$ |
$1$ |
|
$2$ |
$4320$ |
$0.989107$ |
$-5452947409/250$ |
$0.98622$ |
$5.10771$ |
$[1, 1, 0, -12275, -528625]$ |
\(y^2+xy=x^3+x^2-12275x-528625\) |
3.4.0.a.1, 15.8.0-3.a.1.1, 24.8.0-3.a.1.7, 40.2.0.a.1, 120.16.0.? |
$[(505, 10810)]$ |
2450.p2 |
2450b1 |
2450.p |
2450b |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 5^{7} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$120$ |
$16$ |
$0$ |
$1.176013278$ |
$1$ |
|
$2$ |
$1440$ |
$0.439801$ |
$-49/40$ |
$1.02061$ |
$3.66288$ |
$[1, 1, 0, -25, -1875]$ |
\(y^2+xy=x^3+x^2-25x-1875\) |
3.4.0.a.1, 15.8.0-3.a.1.2, 24.8.0-3.a.1.8, 40.2.0.a.1, 120.16.0.? |
$[(15, 30)]$ |
2450.q1 |
2450j1 |
2450.q |
2450j |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{7} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.2 |
7B.6.3 |
$140$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$2880$ |
$0.591894$ |
$-5154200289/20$ |
$1.12200$ |
$4.60178$ |
$[1, -1, 0, -3292, -71884]$ |
\(y^2+xy=x^3-x^2-3292x-71884\) |
7.24.0.a.2, 20.2.0.a.1, 28.48.0-7.a.2.3, 35.48.0-7.a.2.1, 140.96.2.? |
$[]$ |
2450.q2 |
2450j2 |
2450.q |
2450j |
$2$ |
$7$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{14} \cdot 5^{13} \cdot 7^{2} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$7$ |
7.24.0.1 |
7B.6.1 |
$140$ |
$96$ |
$2$ |
$1$ |
$1$ |
|
$0$ |
$20160$ |
$1.564850$ |
$1747829720511/1280000000$ |
$1.08633$ |
$5.34837$ |
$[1, -1, 0, 22958, 684116]$ |
\(y^2+xy=x^3-x^2+22958x+684116\) |
7.24.0.a.1, 20.2.0.a.1, 28.48.0-7.a.1.3, 35.48.0-7.a.1.1, 140.96.2.? |
$[]$ |
2450.r1 |
2450n1 |
2450.r |
2450n |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{9} \cdot 7^{4} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$0.997055$ |
$1323/256$ |
$1.25294$ |
$4.51899$ |
$[1, -1, 0, 383, 52541]$ |
\(y^2+xy=x^3-x^2+383x+52541\) |
20.2.0.a.1 |
$[]$ |
2450.s1 |
2450bc1 |
2450.s |
2450bc |
$1$ |
$1$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{8} \cdot 5^{3} \cdot 7^{4} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
|
|
|
$20$ |
$2$ |
$0$ |
$0.041006893$ |
$1$ |
|
$14$ |
$1152$ |
$0.192336$ |
$1323/256$ |
$1.25294$ |
$3.28157$ |
$[1, -1, 1, 15, 417]$ |
\(y^2+xy+y=x^3-x^2+15x+417\) |
20.2.0.a.1 |
$[(9, 30)]$ |
2450.t1 |
2450y6 |
2450.t |
2450y |
$6$ |
$18$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.12.0.1 |
2B, 3B |
$2520$ |
$864$ |
$21$ |
$0.416944176$ |
$1$ |
|
$10$ |
$41472$ |
$2.190777$ |
$2251439055699625/25088$ |
$1.06489$ |
$7.26340$ |
$[1, 0, 0, -3344888, 2354339392]$ |
\(y^2+xy=x^3-3344888x+2354339392\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ |
$[(1068, 152)]$ |
2450.t2 |
2450y5 |
2450.t |
2450y |
$6$ |
$18$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{18} \cdot 5^{6} \cdot 7^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.12.0.1 |
2B, 3B |
$2520$ |
$864$ |
$21$ |
$0.208472088$ |
$1$ |
|
$15$ |
$20736$ |
$1.844202$ |
$-548347731625/1835008$ |
$1.02933$ |
$6.19798$ |
$[1, 0, 0, -208888, 36835392]$ |
\(y^2+xy=x^3-208888x+36835392\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ |
$[(172, 2364)]$ |
2450.t3 |
2450y4 |
2450.t |
2450y |
$6$ |
$18$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 5^{6} \cdot 7^{12} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 3.12.0.1 |
2B, 3Cs |
$2520$ |
$864$ |
$21$ |
$1.250832530$ |
$1$ |
|
$6$ |
$13824$ |
$1.641468$ |
$4956477625/941192$ |
$1.00821$ |
$5.59417$ |
$[1, 0, 0, -43513, 2860017]$ |
\(y^2+xy=x^3-43513x+2860017\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.b.1, 24.72.1.h.1, $\ldots$ |
$[(32, 1209)]$ |
2450.t4 |
2450y2 |
2450.t |
2450y |
$6$ |
$18$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2 \cdot 5^{6} \cdot 7^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.6, 9.12.0.1 |
2B, 3B |
$2520$ |
$864$ |
$21$ |
$3.752497591$ |
$1$ |
|
$0$ |
$4608$ |
$1.092163$ |
$128787625/98$ |
$0.96763$ |
$5.12642$ |
$[1, 0, 0, -12888, -563858]$ |
\(y^2+xy=x^3-12888x-563858\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.b.1, 9.12.0.a.1, $\ldots$ |
$[(527/2, 845/2)]$ |
2450.t5 |
2450y1 |
2450.t |
2450y |
$6$ |
$18$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{6} \cdot 7^{7} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 9.12.0.1 |
2B, 3B |
$2520$ |
$864$ |
$21$ |
$1.876248795$ |
$1$ |
|
$5$ |
$2304$ |
$0.745589$ |
$-15625/28$ |
$1.01712$ |
$4.15166$ |
$[1, 0, 0, -638, -12608]$ |
\(y^2+xy=x^3-638x-12608\) |
2.3.0.a.1, 3.4.0.a.1, 6.12.0.a.1, 8.6.0.c.1, 9.12.0.a.1, $\ldots$ |
$[(88, 740)]$ |
2450.t6 |
2450y3 |
2450.t |
2450y |
$6$ |
$18$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{6} \cdot 7^{9} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.6.0.1, 3.12.0.1 |
2B, 3Cs |
$2520$ |
$864$ |
$21$ |
$0.625416265$ |
$1$ |
|
$9$ |
$6912$ |
$1.294895$ |
$9938375/21952$ |
$0.98695$ |
$4.93085$ |
$[1, 0, 0, 5487, 263017]$ |
\(y^2+xy=x^3+5487x+263017\) |
2.3.0.a.1, 3.12.0.a.1, 6.36.0.a.1, 8.6.0.c.1, 14.6.0.b.1, $\ldots$ |
$[(-24, 355)]$ |
2450.u1 |
2450x2 |
2450.u |
2450x |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{9} \cdot 5^{2} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$0.131199366$ |
$1$ |
|
$8$ |
$648$ |
$0.035525$ |
$553463785/512$ |
$0.96151$ |
$3.49090$ |
$[1, 0, 0, -183, 937]$ |
\(y^2+xy=x^3-183x+937\) |
3.4.0.a.1, 8.2.0.b.1, 9.12.0.b.1, 24.8.0.b.1, 63.36.0.g.2, $\ldots$ |
$[(6, 5)]$ |
2450.u2 |
2450x1 |
2450.u |
2450x |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( 2^{3} \cdot 5^{2} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.2, 9.12.0.2 |
3B |
$2520$ |
$144$ |
$2$ |
$0.393598099$ |
$1$ |
|
$4$ |
$216$ |
$-0.513782$ |
$46585/8$ |
$0.83046$ |
$2.28858$ |
$[1, 0, 0, -8, -8]$ |
\(y^2+xy=x^3-8x-8\) |
3.4.0.a.1, 8.2.0.b.1, 9.12.0.b.1, 24.8.0.b.1, 63.36.0.g.1, $\ldots$ |
$[(-2, 2)]$ |
2450.v1 |
2450z2 |
2450.v |
2450z |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{21} \cdot 5^{7} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$0.060736309$ |
$1$ |
|
$14$ |
$6048$ |
$1.170244$ |
$-8990558521/10485760$ |
$0.98658$ |
$4.81450$ |
$[1, 0, 0, -3963, 166417]$ |
\(y^2+xy=x^3-3963x+166417\) |
3.4.0.a.1, 40.2.0.a.1, 105.8.0.?, 120.8.0.?, 168.8.0.?, $\ldots$ |
$[(222, 3089)]$ |
2450.v2 |
2450z1 |
2450.v |
2450z |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{7} \cdot 5^{9} \cdot 7^{2} \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$840$ |
$16$ |
$0$ |
$0.182208928$ |
$1$ |
|
$8$ |
$2016$ |
$0.620938$ |
$10100279/16000$ |
$0.93051$ |
$3.87359$ |
$[1, 0, 0, 412, -4208]$ |
\(y^2+xy=x^3+412x-4208\) |
3.4.0.a.1, 40.2.0.a.1, 105.8.0.?, 120.8.0.?, 168.8.0.?, $\ldots$ |
$[(22, 114)]$ |
2450.w1 |
2450s2 |
2450.w |
2450s |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{6} \cdot 5^{9} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$12096$ |
$1.590385$ |
$-77626969/8000$ |
$0.92025$ |
$5.58125$ |
$[1, 1, 1, -39838, -3338469]$ |
\(y^2+xy+y=x^3+x^2-39838x-3338469\) |
3.4.0.a.1, 12.8.0-3.a.1.4, 15.8.0-3.a.1.1, 20.2.0.a.1, 60.16.0-60.a.1.6 |
$[]$ |
2450.w2 |
2450s1 |
2450.w |
2450s |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{2} \cdot 5^{7} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$3$ |
3.4.0.1 |
3B |
$60$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4032$ |
$1.041079$ |
$34391/20$ |
$0.97256$ |
$4.57076$ |
$[1, 1, 1, 3037, 5781]$ |
\(y^2+xy+y=x^3+x^2+3037x+5781\) |
3.4.0.a.1, 12.8.0-3.a.1.3, 15.8.0-3.a.1.2, 20.2.0.a.1, 60.16.0-60.a.1.7 |
$[]$ |
2450.x1 |
2450bf2 |
2450.x |
2450bf |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2 \cdot 5^{8} \cdot 7^{12} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$17280$ |
$1.779808$ |
$-417267265/235298$ |
$0.94642$ |
$5.77670$ |
$[1, 1, 1, -55763, 7098531]$ |
\(y^2+xy+y=x^3+x^2-55763x+7098531\) |
3.4.0.a.1, 8.2.0.a.1, 21.8.0-3.a.1.2, 24.8.0.a.1, 168.16.0.? |
$[]$ |
2450.x2 |
2450bf1 |
2450.x |
2450bf |
$2$ |
$3$ |
\( 2 \cdot 5^{2} \cdot 7^{2} \) |
\( - 2^{3} \cdot 5^{8} \cdot 7^{8} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
|
|
$2, 3$ |
8.2.0.1, 3.4.0.1 |
3B |
$168$ |
$16$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$5760$ |
$1.230503$ |
$397535/392$ |
$1.09655$ |
$4.79815$ |
$[1, 1, 1, 5487, -128969]$ |
\(y^2+xy+y=x^3+x^2+5487x-128969\) |
3.4.0.a.1, 8.2.0.a.1, 21.8.0-3.a.1.1, 24.8.0.a.1, 168.16.0.? |
$[]$ |