Properties

Label 244608cx
Number of curves $1$
Conductor $244608$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cx1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 244608cx1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 - 5 T + 11 T^{2}\) 1.11.af
\(17\) \( 1 + 3 T + 17 T^{2}\) 1.17.d
\(19\) \( 1 - 7 T + 19 T^{2}\) 1.19.ah
\(23\) \( 1 + 5 T + 23 T^{2}\) 1.23.f
\(29\) \( 1 - 3 T + 29 T^{2}\) 1.29.ad
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 244608cx do not have complex multiplication.

Modular form 244608.2.a.cx

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} + q^{9} + 5 q^{11} + q^{13} - 3 q^{15} - 3 q^{17} + 7 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 244608cx

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
244608.cx1 244608cx1 \([0, -1, 0, -2004249, -93955214583]\) \(-316880045595872672/1357028451635831559\) \(-3813054536999651121045504\) \([]\) \(50472960\) \(3.3956\) \(\Gamma_0(N)\)-optimal